Active filters

Active filters are a special family of filters. They take their name from the fact that, aside from passive components, they also contain active elements such as transistors or operational amplifiers. Just like their passive counterparts, depending on the design, they retain or eliminate a specific portion of a signal.

These types of filters have some advantage over passive filters: inductors can be avoided, gain can be introduced and higher quality factors can be obtained.

Active filters can be implemented with different topologies:

1. Akerberg-Mossberg
2. Biquadratic
3. Dual Amplifier Band-Pass (DABP)
4. Fliege
5. Multiple feedback or Rauch
6. State-variable
7. Wien
8. Voltage-Controlled Voltage-Source (VCVS) and Sallen/Key

Active filters also come in different varieties:

1. Butterworth
2. Linkwitz-Riley
3. Bessel or Bessel-Thomson or Thomson
4. Chebyshev (2 types)
5. Elliptical or Cauer
6. Synchronous
7. Gaussian
8. Legendre-Papoulis
9. Paynter or Transitional
10. Butterworth-Thomson or Linear phase

The Butterworth filter has the flattest response in the pass-band. The Chebyshev Type II filter has the steepest cutoff. The Linkwitz-Riley filter is often used in audio applications (crossovers).

The filters presented below include a wide variety of op-amps for the sake of variety and illustration purposes. Some have limited bandwidth such as the AD741 (LM318) while others have wide bandwidth such as LM318 (15MHz) so the frequency response at 1 MHz and beyond varies accordingly. This can clearly be seen from the magnitude plots when the high-frequency rolloff starts.

Note: Cauer is the name of an active filter but it's also the name of a passive topology. The two are different concepts.

Magnitude/frequency definition

A $2^{\text {nd }}$-order filter, a circuit with 2 capacitors, produces two zeros or two poles so the magnitude drops by $12 \mathrm{bB} /$ octave or $40 \mathrm{~dB} /$ decade before or after the cutoff frequency.

Considering two signals with magnitudes A_{1} and A_{2}, the definitions of magnitude decrease per octave and decade are

$$
20 \cdot \log _{10}\left(\frac{A_{1}}{A_{2}}\right)=20 \cdot \log _{10}\left(\frac{1}{4}\right)=-12 d B / \text { octave }
$$

and

$$
20 \cdot \log _{10}\left(\frac{A_{1}}{A_{2}}\right)=20 \cdot \log _{10}\left(\frac{1}{100}\right)=-40 d B / \text { decade }
$$

where octave means twice the frequency and decade means ten times the frequency.

Biquadratic topology

The biquadratic topology takes its name from the fact its transfer function is the ratio of two quadratic functions. It can be implemented in two ways: single-amplifier biquadratic or two-integrator-loop.

An example of this filter topology is the so-called Tow-Thomas circuit. This circuit consists of three op-amps and it can be used as a low-pass or band-pass filter, depending on where its output is taken.

AC sweep from 1 Hz to 10 MHz
The band-pass and low-pass gains are

$$
G_{B P}=-\frac{R_{4}}{R_{2}}=-\frac{1 k \Omega}{1 k \Omega}=-1 \quad \text { and } \quad G_{L P}=+\frac{R_{4}}{R_{2}}=+\frac{1 k \Omega}{1 k \Omega}=+1
$$

The output for the band-pass output is shown in red.
The output for the low-pass output is shown in blue.

The center/cutoff frequency is

$$
f_{c}=\frac{1}{2 \pi \sqrt{R_{2} R_{4} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{1 k \Omega \cdot 1 k \Omega \cdot 1 \mu F \cdot 1 \mu F}}=159.15 \mathrm{~Hz}
$$

The quality factor is

$$
Q=\sqrt{\frac{R_{3}^{2} \cdot C_{1}}{R_{2} \cdot R_{4} \cdot C_{2}}}=\sqrt{\frac{(1 k \Omega)^{2} \cdot 1 \mu F}{1 k \Omega \cdot 1 k \Omega \cdot 1 \mu F}}=1
$$

The bandwidth of the band-pass output is given by

$$
\Delta f=\frac{f_{c}}{Q}=\frac{159.15 \mathrm{~Hz}}{1}=159.15 \mathrm{~Hz}
$$

Frequency
Magnitude plot from 1 Hz to 10 MHz
The center frequency for band-pass filter is at 159 Hz and 0 dB . The magnitude decreases by $-20 \mathrm{~dB} /$ decade to the left and right.

The cutoff frequency for low-pass filter is at 159 Hz . The magnitude decreases linearly by $-40 \mathrm{~dB} / \mathrm{decade}$ to the right of it.

Dual-Amplifier Band-Pass topology

The Dual Amplifier Band-Pass (DABP) topology uses 2 op-amps.

Dual-Amplifier Band-Pass (DABP) filter

The center frequency is given by

$$
f_{c}=\frac{1}{2 \pi \cdot R \cdot C}=\frac{1}{2 \pi \cdot 1.591 \mathrm{kHz} \cdot 100 \mathrm{nF}}=1 \mathrm{kHz}
$$

where $\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}$ and $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}$.

The quality factor is

$$
Q=\frac{R_{1}}{R}=\frac{111.4 k \Omega}{1.591 k \Omega}=70
$$

The values of R_{4} and R_{5} are not critical but must be the same so they are chosen to be $2.2 \mathrm{k} \Omega$.

Magnitude plot from 100 Hz to 10 kHz
The center frequency is at 1 kHz and the gain is +6 dB . The gain decreases by $-20 \mathrm{~dB} / \mathrm{dec}$ ade to the left of 300 Hz and to the right of 3 kHz .

Fliege topology

This circuit uses a single op-amp and it produces a notch filter.

Fliege filter

AC sweep from 3 kHz to 100 kHz
The center frequency is given by

$$
f_{c}=\frac{1}{2 \pi \cdot R_{A} \cdot C_{B}}=\frac{1}{2 \pi \cdot 10 \mathrm{kHz} \cdot 1 \mathrm{nF}}=15.915 \mathrm{kHz}
$$

where $\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{R}_{\mathrm{A}}$ and $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}_{\mathrm{B}}$.
The quality factor is

$$
Q=\frac{R_{C}}{2 \cdot R_{A}}=\frac{100 k \Omega}{2 \cdot 10 k \Omega}=5
$$

where $R_{1}=R_{2}=R_{C}$.

Magnitude plot from 3 kHz to 100 kHz

Multiple feedback topology

The multiple feedback topology takes its name from the fact it has positive and negative feedback. It is also known as Rauch.

Low-pass

Multiple feedback filter (low-pass)

AC sweep from 1 Hz to 10 MHz
The transfer function for the circuit is

$$
H(s)=\frac{V_{o}}{V_{i}}=-\frac{1}{A s^{2}+B s+C}=\frac{K \omega_{o}^{2}}{s^{2}+\frac{\omega_{o}}{Q} s+\omega_{o}^{2}}
$$

where
$A=R_{1} R_{2} C_{1} C_{2}=1 \mathrm{k} \Omega \cdot 1 \mathrm{k} \Omega \cdot 1 \mathrm{nF} \cdot 1 \mathrm{nF}=1 \mathrm{ps}$
$B=R_{2} C_{2}+R_{1} C_{2}+\frac{R_{1} R_{2} C_{2}}{R_{3}}=1 k \Omega \cdot 1 \mathrm{nF}+1 \mathrm{k} \Omega \cdot 1 \mathrm{nF}+\frac{1 \mathrm{k} \Omega \cdot 1 \mathrm{k} \Omega \cdot 1 \mathrm{nF}}{1 \mathrm{k} \Omega}=3 \mu \mathrm{~s}$
$C=\frac{R_{1}}{R_{3}}=\frac{1 k \Omega}{1 k \Omega}=1$
$K=-\frac{R_{3}}{R_{1}}=-\frac{1 k \Omega}{1 k \Omega}=-1$
$Q=\frac{\sqrt{R_{2} R_{3} C_{1} C_{2}}}{\left(R_{3}+R_{2}+|K| R_{2}\right) \cdot C_{2}}=\frac{\sqrt{1 k \Omega \cdot 1 k \Omega \cdot 1 n F \cdot 1 n F}}{(1 k \Omega+1 k \Omega+|-1| \cdot 1 k \Omega) \cdot 1 n F}=0.333$
$f_{c}=\frac{1}{2 \pi \sqrt{R_{2} R_{3} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{1 \mathrm{k} \Omega \cdot 1 \mathrm{k} \Omega \cdot 1 \mathrm{nF} \cdot 1 \mathrm{nF}}}=159.15 \mathrm{kHz}$
$\omega_{o}=2 \pi f_{c}=2 \pi \cdot 159.15 \mathrm{kHz}=999.968 \mathrm{kHz}$
where K is the $D C$ voltage gain, Q is the quality factor, f_{c} is the cutoff frequency and ω_{0} is the angular frequency.

Magnitude plot from 1 Hz to 100 MHz
The magnitude drops to -10.060 dB at 160.456 kHz and then it decreases in a nonlinear fashion to the right of the cutoff frequency.

Several stages can be cascaded to obtain high-order multiple feedback filters.

Band-pass

Multiple feedback filter (band-pass)

AC sweep from 1 Hz to 100 kHz
The center frequency fc is set to 250 Hz , the gain A is set to 1 and the quality factor Q is set to 2 .

The R_{1} resistor is given by

$$
R_{1}=\frac{Q}{A \cdot 2 \pi \cdot f_{c} \cdot C}=\frac{2}{1 \cdot 2 \pi \cdot 250 \mathrm{~Hz} \cdot 100 \mathrm{nF}}=12.732 \mathrm{k} \Omega
$$

where $\mathrm{C}_{1}=\mathrm{C}_{2}=\mathrm{C}$.
The R_{2} resistor is given by

$$
R_{2}=\frac{1}{\left(2 Q-\frac{A}{Q}\right) \cdot 2 \pi \cdot f_{c} \cdot C}=\frac{1}{\left(2 \cdot 2-\frac{1}{2}\right) \cdot 2 \pi \cdot 250 \mathrm{~Hz} \cdot 100 \mathrm{nF}}=1.818 \mathrm{k} \Omega
$$

The R_{3} resistor is given by

$$
R_{3}=\frac{Q}{\pi \cdot f_{c} \cdot C}=\frac{2}{\pi \cdot 250 \mathrm{~Hz} \cdot 100 \mathrm{nF}}=25.465 \mathrm{k} \Omega
$$

Note: R_{3} is twice the size of R_{1} but this is just because A is 1 .

Magnitude plot from 1 Hz to 100 kHz
The center frequency for this filter is at 250 Hz . The magnitude decreases by $-20 \mathrm{~dB} / \mathrm{decade}$ to the left and to the right of it.

The lowest quality that can be achieved is 0.707 which requires R 2 to be set to infinity, that is, not introduced in the circuit at all.

Notch

This is an example of a multiple feedback filter called "1-Band-pass". The first stage is a band-pass filter similar to the previous circuit. The addition of the second state turns the circuit into a notch filter.

AC sweep from 1 Hz to 3 kHz
The band-pass output is shown in red.
The notch output is shown in blue. It has a center frequency at 50 Hz and a quality factor of 2.85 .

Magnitude plot from 1 Hz to 3 kHz
The band-pass output is shown in red. It peaks at 50 Hz . The magnitude decreases by $-20 \mathrm{~dB} /$ decade to the left and to the right of it.
The notch output is shown in blue. It's centered at 50 Hz .

Phase plot from 1 Hz to 3 kHz
The band-pass output is shown in red. Its phase shifts from -90° to -270°. The notch output is shown in blue. Its phase shifts abruptly at 50 Hz from $+108^{\circ}$ to $+251^{\circ}$ at 50 Hz .

State-variable topolngy

This is a versatile filter which provides low-pass, band-pass and high-pass outputs in a single circuit with 3 op-amps.

Note: $R_{1}=R_{2}=R_{3}=R_{4}, R_{6}=R_{7}=R$ and $C_{1}=C_{2}=C$.

AC sweep from 10 Hz to 100 kHz
The center/cutoff frequency is set to 1 kHz . The red trace is for high-pass, the blue trace is for band-pass and the yellow trace is for low-pass.

The R_{6} and R_{7} resistors are given by

$$
R_{6}=R_{7}=\frac{1}{2 \pi \cdot f_{c} \cdot C}=\frac{2}{2 \pi \cdot 1 \mathrm{kHz} \cdot 100 \mathrm{nF}}=1.591 \mathrm{k} \Omega
$$

The quality factor depends on the ratio of R_{5} to R . A ratio of 1.125 produces a Butterworth characteristic so the quality factor is 0.7071 .

For a Bessel response the ratio should be set to 0.575 for a quality factor of 0.5773 and the frequency should be scaled by 1.273 for a cutoff at 1 kHz .

For a 3-dB Chebyshev the ratio should be set to 3.47 for a quality factor of 1.3049 and the frequency should be scaled 0.841 for a cutoff at 1 kHz .

Magnitude plot from 10 Hz to 100 kHz
The 3 outputs meet at -3 dB at 1 kHz .

Sallen/Key topology

The Sallen/Key topology was invented by R. P. Sallen and E. L. Key at MIT Lincoln Laboratory in 1955.

It is a degenerate form of a Voltage-Controlled Voltage-Source (VCVS) filter topology (gain is 1). It features an extremely high input impedance (practically infinite) and an extremely low output impedance (practically zero). These two characteristics are provided by the op-amp and they are often desired in circuit design for signal integrity.

The network for the Sallen/Key topology includes an op-amp, often in a buffer configuration, and a set of resistors and capacitors. The op-amp can sometimes be substituted by an emitter follower or a source follower circuit since both circuits produce unity gain. Cascading two or more stages will produce higher-order filters.

Sallen/Key generic configuration for OdB gain (unity-gain)

Low-pass

The low-pass filter blocks high-frequency signals while leaving low-frequency signals untouched.

Sallen/Key low-pass filter

The cutoff frequency is

$$
f_{c}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{10 \mathrm{k} \Omega \cdot 10 \mathrm{k} \Omega \cdot 1 \mathrm{nF} \cdot 1 \mathrm{nF}}}=15.915 \mathrm{kHz}
$$

The quality factor is

$$
Q=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{C_{2}\left(R_{1}+R_{2}\right)}=\frac{\sqrt{10 k \Omega \cdot 10 k \Omega \cdot 1 n F \cdot 1 n F}}{1 n F \cdot(10 k \Omega+10 k \Omega)}=0.5
$$

This circuit is critically damped.

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to -6 dB at 15.915 kHz and it decreases by $-40 \mathrm{~dB} /$ decade.

High-pass

The high-pass filter blocks low-frequency signals while leaving high-frequency signals untouched.

Sallen/Key high-pass filter

AC sweep from 1 mHz to 100 MHz
The cutoff frequency is

$$
f_{c}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{10 \mathrm{k} \Omega \cdot 10 \mathrm{k} \Omega \cdot 220 \mathrm{nF} \cdot 220 \mathrm{nF}}}=72.34 \mathrm{~Hz}
$$

The quality factor is

$$
Q=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{R_{1}\left(C_{1}+C_{2}\right)}=\frac{\sqrt{10 k \Omega \cdot 10 k \Omega \cdot 220 n F \cdot 220 n F}}{10 k \Omega(220 n F+220 n F)}=0.5
$$

This circuit is critically damped.

Magnitude plot from 1 Hz to 100 MHz
The magnitude drops to -6 dB at 72 Hz and it decreases by $-40 \mathrm{~dB} /$ decade.
Note: the gain starts to roll off at 1 MHz which is the bandwidth of the AD741 op-amp when it's connected in a buffer/non-inverting configuration.

Band-pass

The band-pass filter blocks low and high frequency signals. It peaks at the so-called center frequency. R_{a} and R_{b} provide gain. $\mathrm{C}_{1}-\mathrm{R}_{1}$ form a low-pass filter and $\mathrm{C}_{2}-\mathrm{R}_{2}$ form a high-pass filter.

Sallen/Key band-pass filter

AC sweep from 1 mHz to 1 MHz
The center frequency is

$$
f_{c}=\frac{1}{2 \pi} \sqrt{\frac{R_{3}+R_{1}}{C_{1} C_{2} R_{1} R_{2} R_{3}}}=\frac{1}{2 \pi} \sqrt{\frac{10 \mathrm{k} \Omega+10 \mathrm{k} \Omega}{220 \mathrm{nF} \cdot 220 \mathrm{nF} \cdot 10 \mathrm{k} \Omega \cdot 20 \mathrm{k} \Omega \cdot 10 \mathrm{k} \Omega}}=72.34 \mathrm{~Hz}
$$

The gains are

$$
G=1+\frac{R_{a}}{R_{b}}=1+\frac{10 k \Omega}{20 k \Omega}=1+0.5=1.5 \quad \text { and } \quad A=\frac{G}{3-G}=\frac{1.5}{3-1.5}=1
$$

where G is the internal gain and A is the external gain.
The value of G should be below 3 to avoid oscillation.

The previous is a Sallen/Key circuit as long as the value of R_{b} is twice the value of R_{a}. If A is more or less than unity, the circuit provides amplification and becomes a VCVS filter.

VCVS band-pass filter I

AC sweep from 1 mHz to 1 MHz
The center frequency is

$$
f_{c}=\frac{1}{2 \pi} \sqrt{\frac{R_{3}+R_{1}}{C_{1} C_{2} R_{1} R_{2} R_{3}}}=\frac{1}{2 \pi} \sqrt{\frac{10 \mathrm{k} \Omega+10 \mathrm{k} \Omega}{220 \mathrm{nF} \cdot 220 \mathrm{nF} \cdot 10 \mathrm{k} \Omega \cdot 20 \mathrm{k} \Omega \cdot 10 \mathrm{k} \Omega}}=72.34 \mathrm{~Hz}
$$

However, if $R_{a} \gg R_{b}$, the frequency response is rather flat.

$$
G=1+\frac{R_{a}}{R_{b}}=1+\frac{1 M \Omega}{20 k \Omega}=1+50=51 \quad A=\frac{G}{3-G}=\frac{51}{3-51}=-1.06
$$

This circuit will oscillate because G is greater than 3 .
Note: the magnitude of the output is 6\% higher than the input and this is an indication of amplification.

VCVS band-pass filter II

AC sweep from 1 mHz to 1 MHz
The center frequency is

$$
f_{c}=\frac{1}{2 \pi} \sqrt{\frac{R_{3}+R_{1}}{C_{1} C_{2} R_{1} R_{2} R_{3}}}=\frac{1}{2 \pi} \sqrt{\frac{10 k \Omega+10 k \Omega}{220 n F \cdot 220 n F \cdot 10 k \Omega \cdot 20 k \Omega \cdot 10 k \Omega}}=72.34 \mathrm{~Hz}
$$

If $R_{a} \ll R_{b}$, the gain drops to $1 / 2$ at the center frequency.

$$
G=1+\frac{R_{a}}{R_{b}}=1+\frac{1 k \Omega}{1 M \Omega}=1+0=1 \quad A=\frac{G}{3-G}=\frac{1}{3-1}=+0.5
$$

The minimum gain attainable by this circuit is 0.5 .
Connecting the op-amp in the buffer configuration would produce the same frequency response.

Note: the magnitude of the output at the center frequency is 50% lower than the input.

Frequency

Sallen/Key band-pass filter: Magnitude plot from 1 mHz to 1 MHz
The center frequency is at 72 Hz . The magnitude decreases by $-20 \mathrm{~dB} / \mathrm{decade}$ to the left and right of the center frequency.

VCVS band-pass filter I: Magnitude plot from 1 mHz to 1 MHz
The response is rather flat.

VCVS band-pass filter II: Magnitude plot from 1 mHz to 1 MHz
The center frequency is at 72 Hz with -6 dB . The magnitude decreases by $-20 \mathrm{~dB} / \mathrm{decade}$ to the left and right of the center frequency.

Twin-T filter

The Twin-T filter shown below was invented by Herbert Augustadt in 1934. It is called Twin-T filter because it has two T sections (R1, R2, C3 and C1, C2, R3). It is an evolution of the passive version of the notch filter that bears the same name. The addition of the U2B op-amp allows quality factors above 0.25 .

Twin-T filter
Note: $R_{1}=R_{2}=2 x R_{3}$ and $C_{1}=C_{2}=C_{3} / 2$.

AC sweep from 30 Hz to 30 kHz
The parameter K is defined as

$$
K=\frac{R_{5}}{R_{4}+R_{5}}=\frac{3 k \Omega}{1 k \Omega+3 k \Omega}=0.75
$$

The quality factor is given by

$$
Q=\frac{1}{4(1-K)}=\frac{1}{4(1-0.75)}=1
$$

The center frequency is given by

$$
f_{0}=\frac{1}{2 \pi C_{1} R_{1}}=\frac{1}{2 \pi \cdot 100 n F \cdot 2 k \Omega}=795 \mathrm{~Hz}
$$

Bainter filter

This is another type of notch filter which uses 3 op-amps.

Bainter filter
Note: when $R_{3}=R_{4}$ the gain is 1 on each side of the notch but when R_{3} is larger than R_{4} the gain to the left of the notch is negative and when R_{3} is smaller than R_{4} the gain to the left of the notch is positive. The gain to the right of the notch is always 1 .

The filter has a center frequency at 1 kHz .

Abstract

Magnitude plot from 10 Hz to 100 kHz

Bactor filter

This is another type of notch filter but it only uses only 1 op-amp.

Note: $C_{1}=C_{2}$.

The filter has a center frequency at 250 Hz and a quality factor of 1 .

Magnitude plot from 1 Hz to 10 kHz
The gain is asymmetrical: +6 dB on the left and +12 dB on the right side of the notch.

First-order filters

First-order filters are very simple. They have only one capacitor which in turn produces a single pole. The -3dB frequency is given by

$$
f_{-3 d B}=\frac{1}{2 \pi R C}
$$

First-older filters come in combinations of non-inverting, inverting, low-pass and high-pass. All the filters presented here have unity-gain.

Non-inverting low-pass

This circuit lets the low-frequency signals through without inverting the input.

First-order non-inverting low-pass filter
The $-3 d B$ frequency is given by

$$
f_{-3 d B}=\frac{1}{2 \pi R C}=\frac{1}{2 \pi \cdot 2 k \Omega \cdot 47 n F}=1.693 \mathrm{kHz}
$$

AC sweep from 1 Hz to 1 MHz
The -3 dB frequency for the filter is at 1.693 kHz .

The magnitude drops to -3 dB at 1.693 kHz and then it decreases by -20dB/decade.

Inverting low-pass

This circuit lets the low-frequency signals through while inverting the input.

First-order inverting low-pass filter
R_{1} and R_{2} set the gain which is

$$
A_{v}=-\frac{R_{1}}{R_{2}}=-\frac{723 \Omega}{723 \Omega}=-1
$$

The 220 nF capacitor ensures stability at high frequency.
The $-3 d B$ frequency is given by

$$
f_{-3 d B}=\frac{1}{2 \pi R_{1} C_{1}}=\frac{1}{2 \pi \cdot 723 \Omega \cdot 220 \mathrm{nF}}=1 \mathrm{kHz}
$$

AC sweep from 1 Hz to 1 MHz
The -3 dB frequency for the filter is at 1 kHz .

The magnitude drops to -3 dB at 1 kHz and then it decreases by -20dB/decade.

Non-inverting high-pass

This circuit lets the high-frequency signals through without inverting the input.

First-order non-inverting high-pass filter
The -3 dB frequency is given by

$$
f_{-3 d B}=\frac{1}{2 \pi R C}=\frac{1}{2 \pi \cdot 2 k \Omega \cdot 47 n F}=1.693 \mathrm{kHz}
$$

The -3 dB frequency for the filter is at 1.693 kHz .

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to -3 dB at 1.693 kHz and then it decreases by -20dB/decade.

Inverting high-pass

This circuit lets the high-frequency signals through while inverting the input.

First-order inverting high-pass filter
R_{1} and R_{2} set the gain which is

$$
A_{v}=-\frac{R_{2}}{R_{1}}=-\frac{723 \Omega}{723 \Omega}=-1
$$

The 100 pF capacitor ensures stability at high frequency.
The -3 dB frequency is given by

$$
f_{-3 d B}=\frac{1}{2 \pi R_{1} C_{1}}=\frac{1}{2 \pi \cdot 723 \Omega \cdot 220 \mathrm{nF}}=1 \mathrm{kHz}
$$

AC sweep from 1 Hz to 1 MHz
The -3 dB frequency for the filter is at 1 kHz .

The magnitude drops to -3 dB at 1 kHz and then it decreases by -20dB/decade.

Second-arder filters

Second-order filters have two poles which are given by two capacitors.
The cutoff frequency is

$$
f_{c}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}
$$

Depending on low-pass or high-pass configurations, the quality factors are

$$
\begin{array}{ll}
Q=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{C_{2}\left(R_{1}+R_{2}\right)} & \text { low-pass } \\
Q=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{R_{1}\left(C_{1}+C_{2}\right)} & \text { high-pass }
\end{array}
$$

where C_{2} is the shunt capacitor for the low-pass configuration and R_{1} is the bridging resistor in the high-pass configuration (consistency is important).

The quality factors for $2^{\text {nd }}$-order filters are summarized here:

Butterworth	0.7071
Linkwitz-Riley	0.5
Bessel	0.5773
Chebyshev $(0.5 \mathrm{~dB})$	0.8637
Chebyshev (1dB)	0.9565
Chebyshev (2dB)	1.1286
Chebyshev (3dB)	1.3049
Linear-phase or Butterworth-Thomson	0.6304
Gaussian	0.6013
Legendre-Papoulis	0.707
Transitional or Paynter	0.639

Every type of filter is designed to retain a portion of a signal for a specific range of frequencies while suppressing the same signal at other undesired frequencies. The major difference among filters is in the mathematical framework that lies behind them. Every filter has different ratios among resistors and capacitors and this produces a different response.

Filters of second and higher orders come in unity-gain or gain versions. If they are in the unity-gain configuration, the op-amp is in buffer mode. If gain is needed, then two additional resistors are used to provide the proper gain.

The trick behind designing $2^{\text {nd }}$-order filters is to set up a system of two equations (f_{c} and Q) in two unknowns (C and R). The first equation sets the frequency. The second equation sets the quality factor. It is necessary to choose specific values for frequency and quality factor while leaving two passive components unknown. By using software like Maple it is possible to force a convergence and calculate the two unknowns (C and R).

However, tables with coefficients are available so using them or software typically leads to a faster design.

The second-order filters presented below are designed to cut off at 1 kHz . Any other frequency can be obtained by scaling resistors and capacitors accordingly.

Higher-arder filters

Higher-order filters, filters of $3^{\text {rd }}$-order or higher, have n poles which are given by n capacitors. When an even-order filter is required they are realized by cascading multiple $2^{\text {nd }}$-order filters. When an odd-order filter is required, again, $2^{\text {nd }}$-order filters are required but then they are followed by a single RC filter. The quality factor for each $2^{\text {nd }}$-order filter is in increasing order if avoiding clipping of signals is crucial and in decreasing order if noise performance is the priority.

The cutoff frequency is the same for each stage but, depending on the type of filter, each stage will have a unique quality factor. The RC filter has a cutoff frequency as well but no defined quality factor.

For instance, a $3^{\text {rd }}$-order low-pass Butterworth filter will have $12^{\text {nd }}$-order lowpass stage followed by a low-pass RC filter and a $6^{\text {th }}$-order high-pass Linkwitz-Riley filter will have $32^{\text {nd }}$-order high-pass stages.

All higher-order filters must be designed so that each stage has a unique quality factor. Aside from Butterworth and Linkwitz-Riley, all other filters that need to cut off at a specific frequency also must be designed at a frequency that is shifted by a specific coefficient so that the desired cutoff frequency can be obtained.

Below is a series of tables that list frequency shift coefficients and quality factors that are required for several filters for any order from 2 to 8.

Table 7.3: Frequencies and Q's for Butterworth Filters up to Eighth Order. Stages Are Arranged in Order of Q, with the First-Order Section at the End for the Odd Order Filters

Order	Freq 1	Q 1	Freq 2	Q 2	Freq 3	Q 3	Freq 4	Q 4
2	1.0000	0.7071						
3	1.0000	1.0000	1.0000	n / a				
4	1.0000	0.5412	1.0000	1.3065				
5	1.0000	0.6180	1.0000	1.6181	1.0000	n / a		
6	1.0000	0.5177	1.0000	0.7071	1.0000	1.9320		
7	1.0000	0.5549	1.0000	0.8019	1.0000	2.2472	1.0000	n / a
8	1.0000	0.5098	1.0000	0.6013	1.0000	0.8999	1.0000	2.5628

Table 7.4: Frequencies and Qs for Linkwitz-Riley Filters up to Eighth Order. Stages Are Arranged in Order of Increasing Q, Odd-Order Filters Have the First-Order Section at the End with No Q Shown

Order	Freq 1	Q 1	Freq 2	Q 2	Freq 3	Q 3	Freq 4	Q 4
2	1.0000	0.5000						
3	1.0000	0.7071	1.0000	n / a				
4	1.0000	0.7071	1.0000	0.7071				
5	1.0000	0.7071	1.0000	1.0000	1.0000	n / a		
6	1.0000	0.5000	1.0000	1.0000	1.0000	1.0000		n / a
7	1.0000	0.5412	1.0000	1.0000	1.0000	1.3066	1.0000	
8	1.0000	0.5412	1.0000	0.5412	1.0000	1.3066	1.0000	1.3066

Table 7.5: Frequencies and Qs for Bessel Lowpass Filters up to Eighth Order. For Highpass Filters Use the Reciprocal of the Frequency. Stages Are Arranged in Order of Increasing Q, Odd-Order Filters Have the First-Order Section at the End with No Q Shown

Order	Freq 1	Q 1	Freq 2	Q 2	Freq 3	Q 3	Freq 4	Q 4
2	1.2736	0.5773						
3	1.4524	0.6910	1.3270	n / a				
4	1.4192	0.5219	1.5912	0.8055				
5	1.5611	0.5635	1.7607	0.9165	1.5069	n / a		
6	1.6060	0.5103	1.6913	0.6112	1.9071	1.0234		n / a
7	1.7174	0.5324	1.8235	0.6608	2.0507	1.1262	1.6853	1.2258
8	1.7837	0.5060	1.8376	0.5596	1.9591	0.7109	2.1953	

Table 7.6: Frequencies and Qs for 0.5 dB -Chebyshev Lowpass Filters up to Eighth Order. For Highpass Filters Use the Reciprocal of the Frequency. Stages Are Arranged in Order of Increasing Q, Odd-Order Filters Have the First-Order Section at the End with No Q Shown

Order	Freq 1	Q 1	Freq 2	Q 2	Freq 3	Q 3	Freq 4	Q 4
2	1.2313	0.8637						
3	1.0689	1.7062	0.6265	n / a				
4	0.5970	0.7051	1.0313	2.9406				
5	0.6905	1.1778	1.0177	4.5450	0.3623	n / a		
6	0.3962	0.6836	0.7681	1.8104	1.0114	6.5128		n / a
7	0.5039	1.0916	0.8227	2.5755	1.0080	8.8418	0.2562	
8	0.2967	0.6766	0.5989	1.6107	0.8610	3.4657	1.0059	11.5308

Table 7.7: Frequencies and Qs for 1 dB -Chebyshev Lowpass Filters up to Eighth Order. For Highpass Filters Use the Reciprocal of the Frequency. Stages Are Arranged in Order of Increasing Q, Odd-Order Filters Have the First-Order Section at the End with No Q Shown

Order	Freq 1	Q 1	Freq 2	Q 2	Freq 3	Q 3	Freq 4	Q 4
2	1.0500	0.9565						
3	0.9971	2.0176	0.4942	n / a				
4	0.5286	0.7845	0.9932	3.5600				
5	0.6552	1.3988	0.9941	5.5538	0.2895	n / a		
6	0.3532	0.7608	0.7468	2.1977	0.9953	8.0012		n / a
7	0.4800	1.2967	0.8084	3.1554	0.9963	10.9010	0.2054	
8	0.2651	0.7530	0.5838	1.9564	0.8506	4.2661	0.9971	14.2445

Table 7.8: Frequencies and Qs for 2 dB -Chebyshev Lowpass Filters up to Eighth Order. For Highpass Filters Use the Reciprocal of the Frequency. Stages Are Arranged in Order of Increasing Q, Odd-Order Filters Have the First-Order Section at the End with No Q Shown

Order	Freq 1	Q 1	Freq 2	Q 2	Freq 3	Q 3	Freq 4	Q 4
2	0.9072	1.1286						
3	0.9413	2.5516	0.3689	n / a				
4	0.4707	0.9294	0.9637	4.5939				
5	0.6270	1.7751	0.9758	7.2323	0.2183	n / a		
6	0.3161	0.9016	0.7300	2.8443	0.9828	10.4616		n / a
7	0.4609	1.6464	0.7971	4.1151	0.9872	14.2802	0.1553	
8	0.2377	0.8924	0.5719	2.5327	0.8425	5.5835	0.9901	18.6873

Table 7.9: Frequencies and Qs for 3 dB -Chebyshev Lowpass Filters up to Eighth Order. For Highpass Filters Use the Reciprocal of the Frequency. Stages Are Arranged in Order of Increasing Q, Odd-Order Filters Have the First-Order Section at the End with No Q Shown

Order	Freq 1	Q 1	Freq 2	Q 2	Freq 3	Q 3	Freq 4	Q 4
2	0.8414	1.3049						
3	0.9160	3.0678	0.2986	n / a				
4	0.4426	1.0765	0.9503	5.5770				
5	0.6140	2.1380	0.9675	8.8111	0.1775	n / a		
6	0.2980	1.0441	0.7224	3.4597	0.9771	12.7899		n / a
7	0.4519	1.9821	0.7920	5.0193	0.9831	17.4929	0.1265	2.8704
8	0.2243	1.0337	0.5665	3.0789	0.8388	6.8251	0.9870	22.80

Table 7.11: Frequencies and Q's for Linear-Phase Filters Up to Eighth Order. Stages Are Arranged in Order of Increasing Q, Odd-Order Filters Have the First-Order Section at the End with No Q Shown

Order	Freq 1	Q 1	Freq 2	Q 2	Freq 3	Q 3	Freq 4	Q 4
2	1.0000	0.6304						
3	1.2622	0.9370	0.7923	n / a				
4	1.3340	1.3161	0.7496	0.6074				
5	1.6566	1.7545	1.0067	0.8679	0.5997	n / a		
6	1.6091	2.1870	1.0741	1.1804	0.5786	0.6077		
7	1.9162	2.6679	1.3704	1.5426	0.8066	0.8639	0.4721	n / a
8	1.7962	3.1146	1.3538	1.8914	0.8801	1.1660	0.4673	0.6088

Table 7.12: Frequencies and Q's for Gaussian Filters Up to Eighth Order. Stages Are Arranged in Order of Increasing Q, Odd-Order Filters Have the First-Order Section at the End with No Q Shown

Order	Freq 1	Q 1	Freq 2	Q 2	Freq 3	Q 3	Freq 4	Q 4
2	0.9170	0.6013						
3	0.9923	0.5653	0.9452	n / a				
4	0.9930	0.6362	1.0594	0.5475				
5	1.0427	0.6000	1.1192	0.5370	1.0218	n / a		
6	1.0580	0.6538	1.0906	0.5783	1.1728	0.5302		
7	1.0958	0.6212	1.1358	0.5639	1.2215	0.5254	1.0838	n / a
8	1.1134	0.6644	1.1333	0.5994	1.1782	0.5537	1.2662	0.5219

Table 7.13: Frequencies and Q's for Legendre-Papoulis Filters Up to Eighth Order. Stages Are Arranged in Order of Increasing Q, Odd-Order Filters Have the First-Order Section at the End with No Q Shown

Order	Freq 1	Q 1	Freq 2	Q 2	Freq 3	Q 3	Freq 4	Q 4
2	1.000	0.707						
3	0.9647	1.3974	0.6200	n / a				
4	0.9734	2.1008	0.6563	0.5969				
5	0.9802	3.1912	0.7050	0.9082	0.4680	n / a		
6	0.9846	4.2740	0.7634	1.2355	0.5002	0.570		n / a
7	0.9881	5.7310	0.8137	1.7135	0.5531	0.7919	0.3821	
8	0.9903	7.1826	0.8473	2.1807	0.6187	1.0303	0.4093	0.5573

As an example, a Bessel $5^{\text {th }}$-order low pass filter that needs a cutoff at 10 kHz must have Q1 $=0.5635, \mathrm{Q} 2=0.9165$ and $\mathrm{f}_{01}=10 \mathrm{kHz}^{*} 1.5611=11.561 \mathrm{kHz}$, $\mathrm{f}_{\mathrm{o} 2}=10 \mathrm{kHz}{ }^{*} 1.7607=11.607 \mathrm{kHz}, \mathrm{f}_{03}=10 \mathrm{kHz}{ }^{*} 1.5069=15.069 \mathrm{kHz}$.

Likewise, for a Bessel $5^{\text {th }}$-order high pass filter that needs a cutoff at 10 kHz must have Q1=0.5635, Q2 $=0.9165$ and $f_{01}=10 \mathrm{kHz} / 1.5611=8.65 \mathrm{kHz}$, $\mathrm{f}_{\mathrm{o} 2}=10 \mathrm{kHz} / 1.7607=5.68 \mathrm{kHz}, \mathrm{f}_{\mathrm{o} 3}=10 \mathrm{kHz} / 1.5069=6.636 \mathrm{kHz}$.

The higher-order filters presented below are designed to cut off at 1 kHz . Any other frequency can be obtained by scaling resistors and capacitors accordingly.

Butterwarth filter

The Butterworth filter was originally proposed by Stephen Butterworth in 1930.
This filter can be implemented with different orders. For every order, the gain of the filter will drop by $-6 \mathrm{~dB} /$ octave or $-20 \mathrm{~dB} /$ decade past the cutoff frequency. Increasing the order of the filter will produce a sharper cutoff.

The Butterworth filter has a very flat response and does not present ripples in the pass-band. It can be arranged for low-pass, high-pass, band-pass and band-stop/notch purposes.

A band-pass Butterworth filter is obtained by placing an inductor in parallel with each capacitor to form resonant circuits. The value of each additional component must be selected to resonate with the other component at the frequency of interest.

A band-stop/notch Butterworth filter is obtained by placing an inductor in series with each capacitor to form resonant circuits. The value of each additional component must be selected to resonate with the other component at the frequency to be rejected.

The Butterworth filter can be implemented with different topologies, including Cauer (passive) and Sallen/Key (active).

For a second-order Butterworth filter, the quality factor must be 0.7071 .

Second-order low-pass

In the following example, the circuit is implemented with the Sallen/Key topology. The quality factor must be 0.7071 . This is a second-order filter because it has two capacitors.

Butterworth filter (low-pass) (2 ${ }^{\text {nd }}-$ order $)$
Note: $R_{1}=R_{2}$ and $C_{1}=2 x C_{2}$.

AC sweep from 1 Hz to 1 MHz
The cutoff frequency is

$$
f_{c}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{1.125 k \Omega \cdot 1.125 k \Omega \cdot 200 \mathrm{nF} \cdot 100 \mathrm{nF}}}=1 \mathrm{kHz}
$$

The quality factor is

$$
Q=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{C_{1}\left(R_{1}+R_{2}\right)}=\frac{\sqrt{1.125 \mathrm{k} \Omega \cdot 1.125 \mathrm{k} \Omega \cdot 200 \mathrm{nF} \cdot 100 \mathrm{nF}}}{100 \mathrm{nF} \cdot(1.125 \mathrm{k} \Omega+1.125 \mathrm{k} \Omega)}=0.7071
$$

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to -3 dB at 1 kHz and then it decreases by -40dB/decade.

Second-order high-pass

In the following example, the circuit is implemented with the Sallen/Key topology. The quality factor must be 0.7071 . This is a second-order filter because it has two capacitors.

Butterworth filter (high-pass) (2 $2^{\text {nd }}$-order)
Note: $C_{1}=C_{2}$ and $R_{2}=2 x R_{1}$.

AC sweep from 1 Hz to 1 MHz
The cutoff frequency is

$$
f_{c}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{11.25 k \Omega \cdot 22.5 \mathrm{k} \Omega \cdot 10 \mathrm{nF} \cdot 10 \mathrm{nF}}}=1 \mathrm{kHz}
$$

The quality factor is

$$
Q=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{R_{1}\left(C_{1}+C_{2}\right)}=\frac{\sqrt{11.25 k \Omega \cdot 22.5 \mathrm{k} \Omega \cdot 10 \mathrm{nF} \cdot 10 \mathrm{nF}}}{10 \mathrm{nF} \cdot(11.25 \mathrm{k} \Omega+22.5 \mathrm{k} \Omega)}=0.7071
$$

The magnitude drops to -3.0146 dB at 1 kHz and then it decreases by -40dB/decade.

Third-order low-pass [same capacitor values]

In the following example, the circuit is implemented with the Sallen/Key topology. The capacitor values match here and the circuit provides gain by means of two additional resistors. This is a third-order filter because it has three capacitors.

Butterworth filter (low-pass) ($3^{\text {rd }}$-order)
Note: $C_{1}=C_{2}=C_{3}$.

AC sweep from 1 Hz to 1 MHz
The cutoff frequency is 1 kHz .
The gain is given by the gain resistors:

$$
A=\frac{R_{4}+R_{5}}{R_{5}}=\frac{1.2 k \Omega+1 k \Omega}{1 k \Omega}=2.2
$$

or
$+6.848 \mathrm{~dB}$

The magnitude is flat at +6.8481 dB in the lower frequency range and then it drops to +3.9619 dB at 1 kHz . It eventually decreases to -53.006 dB one decade later.

Third-order low-pass [cascaded]

This circuit is implemented with the Sallen/Key topology by cascading a simple low-pass filter after a second-order filter. For the second-order block the quality factor must be 1 whereas the quality factor for the low-pass filter is not defined. This is a third-order filter because it has three capacitors.

Note: $R_{1}=R_{2}$ and $C_{1}=4 x C_{2}$.

AC sweep from 1 Hz to 1 MHz
The cutoff frequencies are

$$
\begin{aligned}
& f_{c 1}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{795 \Omega \cdot 795 \Omega \cdot 400 \mathrm{nF} \cdot 100 \mathrm{nF}}=1 \mathrm{kHz}} \\
& f_{c 2}=\frac{1}{2 \pi R_{3} C_{3}}=\frac{1}{2 \pi \cdot 1.59 \mathrm{k} \Omega \cdot 100 \mathrm{nF}}=1 \mathrm{kHz}
\end{aligned}
$$

The quality factor of the second-order block is

$$
Q_{1}=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{C_{2}\left(R_{1}+R_{2}\right)}=\frac{\sqrt{795 \Omega \cdot 795 \Omega \cdot 400 n F \cdot 100 n F}}{100 n F \cdot(795 \Omega+795 \Omega)}=1
$$

Abstract

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to -3 dB at 1 kHz and then it decreases by -60dB/decade.

Third-order high-pass [same capacitor values]

In the following example, the circuit is implemented with the Sallen/Key topology. This is a third-order filter because it has three capacitors.

Butterworth filter (high-pass) (3 $3^{\text {rd }}$-order)
Note: $C_{1}=C_{2}=C_{3}$.

AC sweep from 1 Hz to 1 MHz
The cutoff frequency is 1 kHz .

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to -3 dB at 1 kHz and then it decreases by -60dB/decade.

Third-order high-pass [cascaded]

This circuit is implemented with the Sallen/Key topology by cascading a simple high-pass filter after a second-order filter. For the second-order block the quality factor must be 1 whereas the quality factor for the low-pass filter is not defined. This is a third-order filter because it has three capacitors.

Note: $C_{1}=C_{2}$ and $R_{2}=4 x R_{1}$.

AC sweep from 1 Hz to 1 MHz
The cutoff frequencies are

$$
\begin{aligned}
& f_{c 1}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{750 \Omega \cdot 3 k \Omega \cdot 106 \mathrm{nF} \cdot 106 \mathrm{nF}}}=1 \mathrm{kHz} \\
& f_{c 2}=\frac{1}{2 \pi R_{3} C_{3}}=\frac{1}{2 \pi \cdot 1.59 \mathrm{k} \Omega \cdot 100 \mathrm{nF}}=1 \mathrm{kHz}
\end{aligned}
$$

The quality factor of the second-order block is

$$
Q_{1}=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{R_{1}\left(C_{1}+C_{2}\right)}=\frac{\sqrt{750 \Omega \cdot 3 k \Omega \cdot 106 n F \cdot 106 n F}}{750 \Omega \cdot(106 n F+106 n F)}=1
$$

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to -3 dB at 1 kHz and then it decreases by $-60 \mathrm{~dB} /$ decade.

Fourth-order low-pass [same resistor values]

In the following example, the circuit is implemented with the Sallen/Key topology. The resistor values match here and the circuit provides gain by means of two additional resistors. This is a fourth-order filter because it has four capacitors.

Butterworth filter (low-pass) $\left(4^{\text {th }}\right.$-order $)$
Note: all resistor values match.

AC sweep from 1 Hz to 1 MHz
The cutoff frequency is 1 kHz .
The gain is given by the gain resistors:

$$
A=\frac{R_{5}+R_{6}}{R_{6}}=\frac{430 \Omega+1 k \Omega}{1 \mathrm{k} \Omega}=1.43 \quad \text { or } \quad+3.106 \mathrm{~dB}
$$

The magnitude is flat at +3.1064 dB in the lower frequency range and then it drops to +0.343 dB at 1 kHz . It eventually decreases to -61.319 dB at 9.3325 kHz .

Fourth-order low-pass [same capacitor values]

In the following example, the circuit is implemented with the Sallen/Key topology. The capacitor values match here and the circuit provides gain by means of two additional resistors. This is a fourth-order filter because it has four capacitors.

Butterworth filter (low-pass) $\left(4^{\text {th }}\right.$-order $)$
Note: all capacitor values match.

AC sweep from 1 Hz to 1 MHz

The cutoff frequency is 1 kHz .
The gain is given by the gain resistors:

$$
A=\frac{R_{5}+R_{6}}{R_{6}}=\frac{1.2 \Omega+1 k \Omega}{1 k \Omega}=2.2 \quad \text { or } \quad+6.848 \mathrm{~dB}
$$

The magnitude is flat at +6.8481 dB in the lower frequency range and then it drops to +3.7091 dB at 1 kHz . It eventually decreases to -50.861 dB at 8.7096 kHz .

Fourth-order low-pass [cascaded]

This circuit is implemented with the Sallen/Key topology by cascading two second-order filters. The quality factors for the first and the second block must be 0.5412 and 1.3065 respectively. This is a fourth-order filter because it has four capacitors.

AC sweep from 1 Hz to 1 MHz
The cutoff frequencies are

$$
\begin{aligned}
& f_{c 1}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{1.45 k \Omega \cdot 1.45 k \Omega \cdot 120 \mathrm{nF} \cdot 100 \mathrm{nF}}=1.001 \mathrm{kHz}} \\
& f_{c 2}=\frac{1}{2 \pi \sqrt{R_{3} R_{4} C_{3} C_{4}}}=\frac{1}{2 \pi \sqrt{610 \Omega \cdot 610 \Omega \cdot 685 \mathrm{nF} \cdot 100 \mathrm{nF}}}=997 \mathrm{~Hz}
\end{aligned}
$$

The quality factors are

$$
\begin{aligned}
& Q_{1}=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{C_{2}\left(R_{1}+R_{2}\right)}=\frac{\sqrt{1.45 k \Omega \cdot 1.45 \mathrm{k} \Omega \cdot 120 \mathrm{nF} \cdot 100 \mathrm{nF}}}{100 \mathrm{nF} \cdot(1.45 \mathrm{k} \Omega+1.45 \mathrm{k} \Omega)}=0.5477 \\
& Q_{2}=\frac{\sqrt{R_{3} R_{4} C_{3} C_{4}}}{C_{4}\left(R_{3}+R_{4}\right)}=\frac{\sqrt{610 \Omega \cdot 610 \Omega \cdot 685 \mathrm{nF} \cdot 100 \mathrm{nF}}}{100 \mathrm{nF} \cdot(610 \Omega+610 \Omega)}=1.3086
\end{aligned}
$$

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to -2.9035 dB at 1 kHz and then it decreases by -80dB/decade.

Fourth-order high-pass [same capacitor values]

In the following example, the circuit is implemented with the Sallen/Key topology. The capacitor values match here and the circuit provides gain by means of two additional resistors. This is a fourth-order filter because it has four capacitors.

Butterworth filter (high-pass) (4 $4^{\text {th }}$-order)
Note: all capacitor values match.

AC sweep from 1 Hz to 1 MHz
The cutoff frequency is 1 kHz .
The gain is given by the gain resistors:

$$
A=\frac{R_{5}+R_{6}}{R_{6}}=\frac{440 \Omega+1 k \Omega}{1 k \Omega}=1.44 \quad \text { or } \quad+3.167 \mathrm{~dB}
$$

The magnitude is flat at +3.6058 dB in the higher frequency range and then it drops to +0.158 dB at 1 kHz . It eventually decreases to -76.834 at 100 Hz .

Fourth-order high-pass [cascaded]

This circuit is implemented with the Sallen/Key topology by cascading two second-order filters. The quality factors for the first and the second block must be 0.5412 and 1.3065 respectively. This is a fourth-order filter because it has four capacitors.

AC sweep from 1 Hz to 1 MHz
The cutoff frequencies are

$$
\begin{aligned}
& f_{c 1}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{1 \mathrm{k} \Omega \cdot 1.3 \mathrm{k} \Omega \cdot 192 \mathrm{nF} \cdot 100 \mathrm{nF}}=1.007 \mathrm{kHz}} \\
& f_{c 2}=\frac{1}{2 \pi \sqrt{R_{3} R_{4} C_{3} C_{4}}}=\frac{1}{2 \pi \sqrt{1 \mathrm{k} \Omega \cdot 11 \mathrm{k} \Omega \cdot 23 \mathrm{nF} \cdot 100 \mathrm{nF}}}=1 \mathrm{kHz}
\end{aligned}
$$

The quality factors are

$$
\begin{aligned}
& Q_{1}=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{R_{1}\left(C_{1}+C_{2}\right)}=\frac{\sqrt{1 \mathrm{k} \Omega \cdot 1.3 \mathrm{k} \Omega \cdot 192 \mathrm{nF} \cdot 100 \mathrm{nF}}}{1 \mathrm{k} \Omega \cdot(192 n F+100 \mathrm{nF})}=0.5411 \\
& Q_{2}=\frac{\sqrt{R_{3} R_{4} C_{3} C_{4}}}{R_{3}\left(C_{3}+C_{4}\right)}=\frac{\sqrt{1 k \Omega \cdot 11 \mathrm{k} \Omega \cdot 23 \mathrm{nF} \cdot 100 \mathrm{nF}}}{1 \mathrm{k} \Omega \cdot(23 n F+100 \mathrm{nF})}=1.2932
\end{aligned}
$$

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to -3 dB at 1 kHz and then it decreases by -80dB/decade.

Fifth-order low-pass [same resistor values]

In the following example, the circuit is implemented with the Sallen/Key topology. The resistor values match here and the circuit provides gain by means of two additional resistors. This is a fifth-order filter because it has five capacitors.

Butterworth filter (low-pass) $\left(5^{\text {th }}\right.$-order)
Note: all resistor values match.

AC sweep from 1 Hz to 1 MHz
The cutoff frequency is 1 kHz .
The gain is given by the gain resistors:

$$
A=\frac{R_{6}+R_{7}}{R_{7}}=\frac{1 k \Omega+1 k \Omega}{1 k \Omega}=2 \quad \text { or } \quad+6.02 \mathrm{~dB}
$$

The magnitude is flat at +6 dB in the lower frequency range and then it's +7.8451 dB at 1 kHz . It eventually decreases to -75.393 dB at 10 kHz .

Fifth-order Inw-pass [cascaded]

This circuit is implemented with the Sallen/Key topology by cascading a simple low-pass filter after two second-order filters. The quality factors for the first and the second block must be 0.6180 and 1.6181 whereas the quality factor for the low-pass filter is not defined. This is a fifth-order filter because it has five capacitors.

AC sweep from 1 Hz to 1 MHz
The cutoff frequencies are

$$
\begin{aligned}
& f_{c 1}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{1.285 \mathrm{k} \mathrm{\Omega} \cdot 1.285 \mathrm{k} \Omega \cdot 153 \mathrm{nF} \cdot 100 \mathrm{nF}}=1.001 \mathrm{kHz}} \\
& f_{c 2}=\frac{1}{2 \pi \sqrt{R_{3} R_{4} C_{3} C_{4}}}=\frac{1}{2 \pi \sqrt{490 \Omega \cdot 490 \Omega \cdot 1.05 \mu \mathrm{~F} \cdot 100 \mathrm{nF}}}=1.002 \mathrm{kHz} \\
& f_{c 3}=\frac{1}{2 \pi R_{5} C_{5}}=\frac{1}{2 \pi \cdot 1.59 \mathrm{k} \Omega \cdot 100 \mathrm{nF}}=1 \mathrm{kHz}
\end{aligned}
$$

The quality factors are

$$
\begin{aligned}
& Q_{1}=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{C_{2}\left(R_{1}+R_{2}\right)}=\frac{\sqrt{1.285 \mathrm{k} \Omega \cdot 1.285 \mathrm{k} \Omega \cdot 153 \mathrm{nF} \cdot 100 \mathrm{nF}}}{100 \mathrm{nF} \cdot(1.285 \mathrm{k} \Omega+1.285 \mathrm{k} \Omega)}=0.6185 \\
& Q_{2}=\frac{\sqrt{R_{3} R_{4} C_{3} C_{4}}}{C_{4}\left(R_{3}+R_{4}\right)}=\frac{\sqrt{490 \Omega \cdot 490 \Omega \cdot 1050 \mathrm{nF} \cdot 100 \mathrm{nF}}}{100 \mathrm{nF} \cdot(490 \Omega+490 \Omega)}=1.6202
\end{aligned}
$$

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to -3 dB at 1 kHz and then it decreases by $-100 \mathrm{~dB} /$ decade.

Fifth-order high-pass [cascaded]

This circuit is implemented with the Sallen/Key topology by cascading a simple low-pass filter after two second-order filters. The quality factors for the first and the second block must be 0.6180 and 1.6181 whereas the quality factor for the high-pass filter is not defined. This is a fifth-order filter because it has five capacitors.

Butterworth filter (high-pass) ($5^{\text {th }}$-order)

Frequency
AC sweep from 1 Hz to 1 MHz

The cutoff frequencies are

$$
\begin{aligned}
f_{c 1} & =\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{1 \mathrm{kS} \cdot 2.44 \mathrm{k} \Omega \cdot 207 \mathrm{nF} \cdot 50 \mathrm{nF}}}=1.001 \mathrm{kHz} \\
f_{c 2} & =\frac{1}{2 \pi \sqrt{R_{3} R_{4} C_{3} C_{4}}}=\frac{1}{2 \pi \sqrt{1 \mathrm{k} \Omega \cdot 10.475 \mathrm{k} \Omega \cdot 48 \mathrm{nF} \cdot 50 \mathrm{nF}}}=1.003 \mathrm{kHz} \\
f_{c 3} & =\frac{1}{2 \pi R_{5} C_{5}}=\frac{1}{2 \pi \cdot 1.59 \mathrm{k} \Omega \cdot 100 \mathrm{nF}}=1 \mathrm{kHz}
\end{aligned}
$$

The quality factors are

$$
\begin{gathered}
Q_{1}=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{R_{1}\left(C_{1}+C_{2}\right)}=\frac{\sqrt{1 k \Omega \cdot 2.44 k \Omega \cdot 207 \mathrm{nF} \cdot 50 \mathrm{nF}}}{1 \mathrm{k} \Omega \cdot(207 \mathrm{nF}+50 \mathrm{nF})}=0.6183 \\
Q_{2}=\frac{\sqrt{R_{3} R_{4} C_{3} C_{4}}}{R_{3}\left(C_{3}+C_{4}\right)}=\frac{\sqrt{1 k \Omega \cdot 10.475 \mathrm{k} \Omega \cdot 48 \mathrm{nF} \cdot 50 \mathrm{nF}}}{1 \mathrm{k} \Omega \cdot(48 \mathrm{nF}+50 \mathrm{nF})}=1.6179
\end{gathered}
$$

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to -3 dB at 1 kHz and then it decreases by $-100 \mathrm{~dB} /$ decade.

Sixth-order low-pass [same resistor values]

In the following example, the circuit is implemented with the Sallen/Key topology. The resistor values match here and the circuit provides gain by means of two additional resistors. This is a sixth-order filter because it has six capacitors.

Note: all resistor values match.

AC sweep from 1 Hz to 1 MHz
The cutoff frequency is 1 kHz .
The gain is given by the gain resistors:

$$
A=\frac{R_{7}+R_{8}}{R_{8}}=\frac{1 k \Omega+1 k \Omega}{1 k \Omega}=2 \quad \text { or } \quad+6.02 \mathrm{~dB}
$$

The magnitude is flat at +6 dB in the lower frequency range and then it drops to +3.1353 dB at 1 kHz . It eventually decreases to -65.177 dB at 3.8019 kHz .

Sixth-urder law-pass [cascaded]

This circuit is implemented with the Sallen/Key topology by cascading 3 second-order filters. The quality factors for each block must be $0.5177,0.7071$ and 1.9320. This is a sixth-order filter because it has six capacitors.

Butterworth filter (low-pass) ($6^{\text {th }}$-order)

AC sweep from 1 Hz to 1 MHz
The plot shown above clearly demonstrates that increasing the order of the filter will produce a sharper response. Increasing the order of the filter will produce an almost vertical drop at the cutoff frequency.

The cutoff frequencies are

$$
\begin{aligned}
& f_{c 1}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{2.584 k \Omega \cdot 490 \Omega \cdot 200 \mathrm{nF} \cdot 100 \mathrm{nF}}=1 \mathrm{kHz}} \\
& f_{c 2}=\frac{1}{2 \pi \sqrt{R_{3} R_{4} C_{3} C_{4}}}=\frac{1}{2 \pi \sqrt{1.125 \mathrm{k} \Omega \cdot 1.1245 \mathrm{k} \Omega \cdot 2 \mu F \cdot 100 \mathrm{nF}}}=1 \mathrm{kHz} \\
& f_{c 3}=\frac{1}{2 \pi \sqrt{R_{5} R_{6} C_{5} C_{6}}}=\frac{1}{2 \pi \sqrt{619 \Omega \cdot 204 \Omega \cdot 2 \mu F \cdot 100 \mathrm{nF}}}=1 \mathrm{kHz}
\end{aligned}
$$

The quality factors are

$$
\begin{aligned}
& Q_{1}=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{C_{2}\left(R_{1}+R_{2}\right)}=\frac{\sqrt{2.584 k \Omega \cdot 490 \Omega \cdot 200 \mathrm{nF} \cdot 100 \mathrm{nF}}}{100 \mathrm{nF} \cdot(2.584 \mathrm{k} \Omega+490 \Omega)}=0.5177 \\
& Q_{2}=\frac{\sqrt{R_{3} R_{4} C_{3} C_{4}}}{C_{4}\left(R_{3}+R_{4}\right)}=\frac{\sqrt{1.125 \mathrm{k} \Omega \cdot 1.125 \mathrm{k} \Omega \cdot 2 \mu \mathrm{~F} \cdot 100 \mathrm{nF}}}{100 \mathrm{nF} \cdot(1.125 \mathrm{k} \Omega+1.125 \mathrm{k} \Omega)}=0.7070 \\
& Q_{3}=\frac{\sqrt{R_{5} R_{6} C_{5} C_{6}}}{C_{6}\left(R_{5}+R_{6}\right)}=\frac{\sqrt{619 \Omega \cdot 204 \Omega \cdot 2 \mu \mathrm{~F} \cdot 100 \mathrm{nF}}}{100 \mathrm{nF} \cdot(619 \Omega+204 \Omega)}=1.9310
\end{aligned}
$$

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to -3 dB at 1 kHz and then it decreases by $-120 \mathrm{~dB} /$ decade.

Sixth-order high-pass [cascaded]

This circuit is implemented with the Sallen/Key topology by cascading 3 second-order filters. The quality factors for each block must be $0.5177,0.7071$ and 1.9320. This is a sixth-order filter because it has six capacitors.

Butterworth filter (high-pass) ($6^{\text {th }}$-order)

AC sweep from 1 Hz to 1 MHz
The plot shown above clearly demonstrates that increasing the order of the filter will produce a sharper response. Increasing the order of the filter will produce an almost vertical drop at the cutoff frequency.

The cutoff frequencies are

$$
\begin{aligned}
& f_{c 1}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{615 \Omega \cdot 1.03 \mathrm{k} \mathrm{\Omega} \cdot 400 \mathrm{nF} \cdot 100 \mathrm{nF}}}=1 \mathrm{kHz} \\
& f_{c 2}=\frac{1}{2 \pi \sqrt{R_{3} R_{4} C_{3} C_{4}}}=\frac{1}{2 \pi \sqrt{450 \Omega \cdot 1.405 \mathrm{k} \mathrm{\Omega} \cdot 400 \mathrm{nF} \cdot 100 \mathrm{nF}}}=1.001 \mathrm{kHz} \\
& f_{c 3}=\frac{1}{2 \pi \sqrt{R_{5} R_{6} C_{5} C_{6}}}=\frac{1}{2 \pi \sqrt{165 \Omega \cdot 3.844 \mathrm{kS} \cdot 400 \mathrm{nF} \cdot 100 \mathrm{nF}}}=999 \mathrm{~Hz}
\end{aligned}
$$

The quality factors are

$$
\begin{aligned}
& Q_{1}=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{R_{1}\left(C_{1}+C_{2}\right)}=\frac{\sqrt{615 \Omega \cdot 1.03 \mathrm{k} \Omega \cdot 400 \mathrm{nF} \cdot 100 \mathrm{nF}}}{615 \Omega \cdot(400 \mathrm{nF}+100 \mathrm{nF})}=0.5177 \\
& Q_{2}=\frac{\sqrt{R_{3} R_{4} C_{3} C_{4}}}{R_{3}\left(C_{3}+C_{4}\right)}=\frac{\sqrt{450 \Omega \cdot 1.405 \mathrm{k} \Omega \cdot 400 \mathrm{nF} \cdot 100 \mathrm{nF}}}{450 \Omega \cdot(400 \mathrm{nF}+100 \mathrm{nF})}=0.7068 \\
& Q_{3}=\frac{\sqrt{R_{5} R_{6} C_{5} C_{6}}}{R_{5}\left(C_{5}+C_{6}\right)}=\frac{\sqrt{165 \Omega \cdot 3.844 \mathrm{k} \Omega \cdot 400 \mathrm{nF} \cdot 100 \mathrm{nF}}}{165 \Omega \cdot(400 \mathrm{nF}+100 \mathrm{nF})}=1.9307
\end{aligned}
$$

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to -3 dB at 1 kHz and then it decreases by $-120 \mathrm{~dB} /$ decade.

Linkwitz-Riley filter

The Linkwitz-Riley filter was invented by Siegfried Linkwitz and Russ Riley in 1978. This filter is alternatively called Butterworth squared filter (squared because for the Linkwitz-Riley filter $\mathrm{Q}=0.5$, for the Butterworth filter $\mathrm{Q}=0.7071$ and the square of 0.7071 is 0.5). This filter is used in audio crossovers.

The Linkwitz-Riley filter can be implemented with different orders. For every order, the gain of the filter will drop by $-6 \mathrm{~dB} /$ octave or $-20 \mathrm{~dB} / \mathrm{decade}$ past the cutoff frequency. Increasing the order of the filter will produce a sharper cutoff.

A $2 n^{\text {th }}$-order Linkwitz-Riley filter can be obtained by cascading $2 \mathrm{n}^{\text {th }}$-order Butterworth filters ($22^{\text {nd }}$-order Butterworth filters will produce a $4^{\text {th }}$-order Linkwitz-Riley filter).

In a way, the Linkwitz-Riley filter is a superset of the Butterworth filter which in turn exploits the Sallen/Key topology.

For a second-order Linkwitz-Riley filter, the quality factor must be 0.5 .

Second-order low-pass

In the following example, the circuit is implemented with the Sallen/Key topology. The quality factor must be 0.5 . This is a second-order filter because it has two capacitors.

Linkwitz-Riley filter (low-pass) (2 ${ }^{\text {nd }}$-order)
Note: $R_{1}=R_{2}$ and $C_{1}=C_{2}$.

AC sweep from 1 Hz to 1 MHz
The cutoff frequency is

$$
f_{c}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{1.58 \mathrm{k} \Omega \cdot 1.58 \mathrm{k} \Omega \cdot 100 \mathrm{nF} \cdot 100 \mathrm{nF}}}=1.007 \mathrm{kHz}
$$

The quality factor is

$$
Q=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{C_{1}\left(R_{1}+R_{2}\right)}=\frac{\sqrt{1.58 k \Omega \cdot 1.58 \mathrm{k} \Omega \cdot 100 \mathrm{nF} \cdot 100 \mathrm{nF}}}{100 \mathrm{nF} \cdot(1.58 \mathrm{k} \Omega+1.58 \mathrm{k} \Omega)}=0.5
$$

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to -5.9577 dB at 1 kHz and then it decreases by $-40 \mathrm{~dB} /$ decade.

Second-order high-pass

In the following example, the circuit is implemented with the Sallen/Key topology. The quality factor must be 0.5 . This is a second-order filter because it has two capacitors.

Linkwitz-Riley filter (high-pass) (2 $2^{\text {nd }}$-order)
Note: $C_{1}=C_{2}$ and $R_{1}=R_{2}$.

AC sweep from 1 Hz to 1 MHz
The cutoff frequency is

$$
f_{c}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{15.8 k \Omega \cdot 15.8 k \Omega \cdot 10 \mathrm{nF} \cdot 10 \mathrm{nF}}}=1.007 \mathrm{kHz}
$$

The quality factor is

$$
Q=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{R_{1}\left(C_{1}+C_{2}\right)}=\frac{\sqrt{15.8 k \Omega \cdot 15.8 \mathrm{k} \Omega \cdot 10 \mathrm{nF} \cdot 10 \mathrm{nF}}}{15.8 \mathrm{k} \Omega \cdot(10 \mathrm{nF}+10 \mathrm{nF})}=0.5
$$

The magnitude drops to -6.0842 dB at 1 kHz and then it decreases by -40dB/decade.

Fourth-order low-pass [same resistor values]

In the following example, the circuit is implemented with the Sallen/Key topology. The resistor values match here and the circuit provides gain by means of two additional resistors. This is a fourth-order filter because it has four capacitors.

Linkwitz-Riley filter (low-pass) (4 $4^{\text {th }}$-order)
Note: all resistor values match.

AC sweep from 1 Hz to 1 MHz
The cutoff frequency is 1 kHz .
The gain is given by the gain resistors:

$$
A=\frac{R_{5}+R_{6}}{R_{6}}=\frac{330 \Omega+1 k \Omega}{1 k \Omega}=1.33 \quad \text { or } \quad+2.477 \mathrm{~dB}
$$

The magnitude is flat at +2.4767 dB in the lower frequency range and then it drops to -3.7 dB at 1 kHz . It eventually decreases to -61.944 dB at 9.3325 kHz .

Fourth-order low-pass [cascaded]

This circuit is implemented with the Sallen/Key topology by cascading two identical second-order filters. The quality factors for the blocks must be 0.7071 (equivalent to two cascaded Butterworth stages). This is a fourth-order filter because it has four capacitors.

Linkwitz-Riley filter (low-pass) (4 $4^{\text {th }}$-order)

AC sweep from 1 Hz to 1 MHz
The cutoff frequencies are

$$
f_{c 1}=f_{c 2}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{7.5 \mathrm{k} \Omega \cdot 7.5 \mathrm{k} \Omega \cdot 30 \mathrm{nF} \cdot 15 \mathrm{nF}}}=1 \mathrm{kHz}
$$

The quality factors are

$$
Q_{1}=Q_{2}=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{C_{2}\left(R_{1}+R_{2}\right)}=\frac{\sqrt{7.5 \mathrm{k} \Omega \cdot 7.5 \mathrm{k} \Omega \cdot 30 \mathrm{nF} \cdot 15 \mathrm{nF}}}{15 \mathrm{nF} \cdot(7.5 \mathrm{k} \Omega+7.5 \mathrm{k} \Omega)}=0.7071
$$

The magnitude drops to -6 dB at 1 kHz and then it decreases by -80dB/decade.

Fourth-order high-pass [same capacitor values]

In the following example, the circuit is implemented with the Sallen/Key topology. The capacitor values match here and the circuit provides gain by means of two additional resistors. This is a fourth-order filter because it has four capacitors.

Linkwitz-Riley filter (high-pass) ($4^{\text {th }}$-order)
Note: all capacitor values match

AC sweep from 1 Hz to 1 MHz
The cutoff frequency is 1 kHz .
The gain is given by the gain resistors:

$$
A=\frac{R_{5}+R_{6}}{R_{6}}=\frac{320 \Omega+1 k \Omega}{1 k \Omega}=1.32 \quad \text { or } \quad+2.411 \mathrm{~dB}
$$

Magnitude plot from 1 Hz to 1 MHz

The magnitude is flat at +2.3198 dB in the higher frequency range and then it drops to -3.5828 dB at 1 kHz . It eventually decreases by $-80 \mathrm{~dB} /$ decade.

Fourth-order high-pass [cascaded]

This circuit is implemented with the Sallen/Key topology by cascading two identical second-order filters. The quality factors for the blocks must be 0.7071 (equivalent to two cascaded Butterworth stages). This is a fourth-order filter because it has four capacitors.

Linkwitz-Riley filter (high-pass) (4 ${ }^{\text {th }}$-order)

AC sweep from 1 Hz to 1 MHz
The cutoff frequencies are

$$
f_{c 1}=f_{c 2}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{7.5 k \Omega \cdot 15 \mathrm{k} \Omega \cdot 15 \mathrm{nF} \cdot 15 \mathrm{nF}}}=1 \mathrm{kHz}
$$

The quality factors are

$$
Q_{1}=Q_{2}=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{R_{1}\left(C_{1}+C_{2}\right)}=\frac{\sqrt{7.5 \mathrm{k} \Omega \cdot 15 \mathrm{k} \Omega \cdot 15 \mathrm{nF} \cdot 15 \mathrm{nF}}}{7.5 \mathrm{k} \Omega \cdot(15 \mathrm{nF}+15 \mathrm{nF})}=0.7071
$$

The magnitude drops to -6 dB at 1 kHz and then it decreases by -80dB/decade.

Sixth-urder low-pass [cascaded]

This circuit is implemented with the Sallen/Key topology by cascading 3 second-order filters. All blocks cut off at the same frequency. However, the first stage must have $\mathrm{Q}=0.5$, the second and the third stages must have $\mathrm{Q}=1$. This is a sixth-order filter because it has six capacitors.

AC sweep from 1 Hz to 1 MHz
The plot shown above clearly demonstrates that increasing the order of the filter will produce a sharper response. Increasing the order of the filter will produce an almost vertical drop at the cutoff frequency.

The cutoff frequencies are

$$
\begin{aligned}
& f_{c 1}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{1.325 k \Omega \cdot 1.325 k \Omega \cdot 120 \mathrm{nF} \cdot 120 \mathrm{nF}}}=1.001 \mathrm{kHz} \\
& f_{c 2}=f_{c 3}=\frac{1}{2 \pi \sqrt{R_{3} R_{4} C_{3} C_{4}}}=\frac{1}{2 \pi \sqrt{1.59 \mathrm{k} \Omega \cdot 1.59 \mathrm{k} \Omega \cdot 200 \mathrm{nF} \cdot 50 \mathrm{nF}}}=1.001 \mathrm{kHz}
\end{aligned}
$$

The quality factors are

$$
\begin{aligned}
& Q_{1}=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{C_{2}\left(R_{1}+R_{2}\right)}=\frac{\sqrt{1.325 k \Omega \cdot 1.325 \mathrm{k} \Omega \cdot 120 \mathrm{nF} \cdot 120 \mathrm{nF}}}{55 \mathrm{nF} \cdot(1.325 \mathrm{k} \Omega+1.325 \mathrm{k} \Omega)}=0.5 \\
& Q_{2}=Q_{3}=\frac{\sqrt{R_{3} R_{4} C_{3} C_{4}}}{C_{4}\left(R_{3}+R_{4}\right)}=\frac{\sqrt{1.59 \mathrm{k} \Omega \cdot 1.59 \mathrm{k} \Omega \cdot 200 \mathrm{nF} \cdot 50 \mathrm{nF}}}{50 \mathrm{nF} \cdot(1.59 \mathrm{k} \Omega+1.59 \mathrm{k} \Omega)}=1
\end{aligned}
$$

The magnitude drops to -6 dB at 1 kHz and then it decreases by $-120 \mathrm{~dB} /$ decade.

Sixth-order high-pass [cascaded]

This circuit is implemented with the Sallen/Key topology by cascading 3 second-order filters. All blocks cut off at the same frequency. However, the first stage must have $\mathrm{Q}=0.5$, the second and the third stages must have $\mathrm{Q}=1$. This is a sixth-order filter because it has six capacitors.

AC sweep from 1 Hz to 1 MHz
The plot shown above clearly demonstrates that increasing the order of the filter will produce a sharper response. Increasing the order of the filter will produce an almost vertical drop at the cutoff frequency.

The cutoff frequencies are

$$
\begin{aligned}
& f_{c 1}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{1.325 k \Omega \cdot 1.325 k \Omega \cdot 120 \mathrm{nF} \cdot 120 \mathrm{FF}}}=1.001 \mathrm{kHz} \\
& f_{c 2}=f_{c 3}=\frac{1}{2 \pi \sqrt{R_{3} R_{4} C_{3} C_{4}}}=\frac{1}{2 \pi \sqrt{1.5 \mathrm{k} \Omega \cdot 6 \mathrm{k} \Omega \cdot 50 \mathrm{nF} \cdot 57 \mathrm{nF}}}=994 \mathrm{~Hz}
\end{aligned}
$$

The quality factors are

$$
\begin{aligned}
& Q_{1}=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{R_{1}\left(C_{1}+C_{2}\right)}=\frac{\sqrt{1.325 k \Omega \cdot 1.325 k \Omega \cdot 120 \mathrm{nF} \cdot 120 \mathrm{nF}}}{1.325 \mathrm{k} \Omega \cdot(120 \mathrm{nF}+120 \mathrm{nF})}=0.5 \\
& Q_{2}=Q_{3}=\frac{\sqrt{R_{3} R_{4} C_{3} C_{4}}}{R_{4}\left(C_{3}+C_{4}\right)}=\frac{\sqrt{1.5 \mathrm{k} \Omega \cdot 6 \mathrm{k} \Omega \cdot 50 \mathrm{nF} \cdot 57 \mathrm{nF}}}{6 \mathrm{k} \Omega \cdot(50 \mathrm{nF}+57 \mathrm{nF})}=0.9979
\end{aligned}
$$

The magnitude drops to -5.9734 dB at 1 kHz and then it decreases by $-120 \mathrm{~dB} /$ decade.

Bessel filter

The Bessel filter is named after Friedrich Bessel, a German mathematician and astronomer who studied the mathematics behind the filter before it was implemented. This is also known as Bessel-Thomson or Thomson filter. W. E. Thomson was responsible for actually using the theory and putting it to work.

For a second-order Bessel filter, the quality factor must be 0.5773 .

Second-arder Inw-pass

In the following example, the circuit is implemented with the Sallen/Key topology. The quality factor must be 0.5773 . When the filter is designed for a specific frequency, the cutoff must be offset up by 1.2736 . This is a secondorder filter because it has two capacitors.

Bessel filter (low-pass) (2 $2^{\text {nd }}$-order)

AC sweep from 1 Hz to 1 MHz
The cutoff frequency is

$$
f_{c}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{1.74 k \Omega \cdot 48.6 \mathrm{k} \Omega \cdot 33 \mathrm{nF} \cdot 4.3 \mathrm{nF}}}=1.273 \mathrm{kHz}
$$

The quality factor is

$$
Q=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{C_{2}\left(R_{1}+R_{2}\right)}=\frac{\sqrt{1.74 k \Omega \cdot 48.6 k \Omega \cdot 33 n F \cdot 4.3 n F}}{4.3 n F \cdot(1.74 k \Omega+48.6 k \Omega)}=0.5777
$$

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to -3 dB at 1 kHz and then it decreases by -40dB/decade.

Second-order high-pass

In the following example, the circuit is implemented with the Sallen/Key topology. The quality factor must be 0.5773 . When the filter is designed for a specific frequency, the cutoff must be offset down by $1 / 1.2736$. This is a second-order filter because it has two capacitors.

Bessel filter (high-pass) (2 $2^{\text {nd }}$-order)
Note: $C_{1}=C_{2}$.

AC sweep from 1 Hz to 1 MHz
The cutoff frequency is

$$
f_{c}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{28.3 \mathrm{k} \mathrm{\Omega} \cdot 37.8 \mathrm{k} \mathrm{\Omega} \cdot 6.2 n F \cdot 6.2 n F}}=785 \mathrm{~Hz}
$$

The quality factor is

$$
Q=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{R_{1}\left(C_{1}+C_{2}\right)}=\frac{\sqrt{28.3 k \Omega \cdot 37.8 k \Omega \cdot 6.2 n F \cdot 6.2 n F}}{28.3 k \Omega \cdot(6.2 n F+6.2 n F)}=0.5779
$$

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to -3 dB at 1 kHz and then it decreases by -40dB/decade.

Third-order low-pass [same resistor values]

In the following example, the circuit is implemented with the Sallen/Key topology. The resistor values match here. This is a third-order filter because it has three capacitors.

Bessel filter (low-pass) ($3^{\text {rd }}$-order)
Note: $R_{1}=R_{2}=R_{3}$.

AC sweep from 1 Hz to 1 MHz
The cutoff frequency is 1 kHz .

The magnitude drops to -2.8984 dB at 1 kHz and then it decreases to 51.006 dB a decade later.

Third-order low-pass [same capacitor values]

In the following example, the circuit is implemented with the Sallen/Key topology. The capacitor values match here and the circuit provides gain by means of two additional resistors. This is a third-order filter because it has three capacitors.

Bessel filter (low-pass) ($3^{\text {rd }}$-order)
Note: $C_{1}=C_{2}=C_{3}$.

AC sweep from 1 Hz to 1 MHz
The cutoff frequency is 1 kHz .
The gain is given by the gain resistors:

$$
A=\frac{R_{4}+R_{5}}{R_{5}}=\frac{1.2 k \Omega+1 k \Omega}{1 k \Omega}=2.2 \quad \text { or } \quad+6.848 \mathrm{~dB}
$$

Frequency

Magnitude plot from 1 Hz to 1 MHz
The magnitude is flat at +6.8478 dB in the lower frequency range and then it drops to +3.8909 dB at 1 kHz . It eventually decreases to -44.399 dB one decade later.

Third-order Inw-pass [cascaded]

This circuit is implemented with the Sallen/Key topology by cascading a simple low-pass filter after a second-order filter. For the second-order block the quality factor must be 0.6910 whereas the quality factor for the low-pass filter is not defined. When the filter is designed for a specific frequency, the cutoff of the second-order block must be offset up by 1.4524 and the cutoff for the RC filter must be offset up by 1.3270. This is a third-order filter because it has three capacitors.

Bessel filter (low-pass) ($3^{\text {rd }}$-order)

AC sweep from 1 Hz to 1 MHz
The cutoff frequencies are

$$
\begin{aligned}
& f_{c 1}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{2.81 \mathrm{k} \Omega \cdot 20.5 \mathrm{k} \Omega \cdot 33 \mathrm{nF} \cdot 6.8 \mathrm{nF}}}=1.452 \mathrm{kHz} \\
& f_{c 2}=\frac{1}{2 \pi R_{3} C_{3}}=\frac{1}{2 \pi \cdot 12.1 \mathrm{k} \Omega \cdot 10 \mathrm{nF}}=1.315 \mathrm{kHz}
\end{aligned}
$$

The quality factor of the second-order block is

$$
Q=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{C_{2}\left(R_{1}+R_{2}\right)}=\frac{\sqrt{2.81 k \Omega \cdot 20.5 k \Omega \cdot 33 n F \cdot 6.8 n F}}{6.8 n F \cdot(2.1 k \Omega+20.5 k \Omega)}=0.6973
$$

Abstract

The magnitude drops to -2.9544 dB at 1 kHz and then it decreases by -60dB/decade.

Third-order high-pass [cascaded]

This circuit is implemented with the Sallen/Key topology by cascading a simple high-pass filter after a second-order filter. For the second-order block the quality factor must be 0.6910 whereas the quality factor for the low-pass filter is not defined. When the filter is designed for a specific frequency, the cutoff of the second-order block must be offset down by $1 / 1.4524$ and the cutoff for the RC filter must be offset down by $1 / 1.3270$. This is a third-order filter because it has three capacitors.

Bessel filter (high-pass) ($3^{\text {rd }}$-order)

AC sweep from 1 Hz to 1 MHz
The cutoff frequencies are

$$
\begin{aligned}
& f_{c 1}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{4.32 k \Omega \cdot 18.2 k \Omega \cdot 68 \mathrm{nF} \cdot 10 \mathrm{nF}}}=688 \mathrm{~Hz} \\
& f_{c 2}=\frac{1}{2 \pi R_{3} C_{3}}=\frac{1}{2 \pi \cdot 9.09 \mathrm{k} \Omega \cdot 22 n F}=796 \mathrm{~Hz}
\end{aligned}
$$

The quality factor of the second-order block is

$$
Q=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{R_{1}\left(C_{1}+C_{2}\right)}=\frac{\sqrt{2.81 k \Omega \cdot 20.5 k \Omega \cdot 33 n F \cdot 6.8 n F}}{432 k \Omega \cdot(68 n F+10 n F)}=0.6862
$$

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to -3.2137 dB at 1 kHz and then it decreases by -60dB/decade.

Fourth-order low-pass [same capacitor values]

In the following example, the circuit is implemented with the Sallen/Key topology. The capacitor values match here and the circuit provides gain by means of two additional resistors. This is a fourth-order filter because it has four capacitors.

Bessel filter (low-pass) ($4^{\text {th }}$-order)
Note: all capacitor values match

AC sweep from 1 Hz to 1 MHz
The cutoff frequency is 1 kHz .
The gain is given by the gain resistors:

$$
A=\frac{R_{5}+R_{6}}{R_{6}}=\frac{1.2 \mathrm{k} \Omega+1 \mathrm{k} \Omega}{1 \mathrm{k} \Omega}=2.2 \quad \text { or } \quad+6.848 \mathrm{~dB}
$$

The magnitude is flat at +6.8478 dB in the lower frequency range and then it drops to +3.8777 dB at 1 kHz . It eventually decreases to -50.168 dB at 12.689 kHz .

Fourth-order Inw-pass [cascaded]

This circuit is implemented with the Sallen/Key topology by cascading two second-order filters. The quality factors for the first and the second block must be 0.5219 and 0.8055 respectively. When the filter is designed for a specific frequency, the cutoff of the first block must be offset up by 1.4192 and the cutoff for the second block must be offset up by 1.5912. This is a fourth-order filter because it has four capacitors.

Bessel filter (low-pass) ($4^{\text {th }}$-order)

AC sweep from 1 Hz to 1 MHz
The cutoff frequencies are

$$
\begin{aligned}
& f_{c 1}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{1.96 k \Omega \cdot 19.1 \mathrm{k} \Omega \cdot 33 \mathrm{nF} \cdot 10 \mathrm{nF}}=1.432 \mathrm{kHz}} \\
& f_{c 2}=\frac{1}{2 \pi \sqrt{R_{3} R_{4} C_{3} C_{4}}}=\frac{1}{2 \pi \sqrt{1.91 \mathrm{k} \Omega \cdot 16.2 \mathrm{k} \Omega \cdot 47 \mathrm{nF} \cdot 6.8 \mathrm{nF}}=1.6 \mathrm{kHz}}
\end{aligned}
$$

The quality factors are

$$
\begin{aligned}
& Q_{1}=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{C_{2}\left(R_{1}+R_{2}\right)}=\frac{\sqrt{1.96 \mathrm{k} \Omega \cdot 19.1 \mathrm{k} \Omega \cdot 33 \mathrm{nF} \cdot 10 \mathrm{nF}}}{10 \mathrm{nF} \cdot(1.96 \mathrm{k} \Omega+19.1 \mathrm{k} \Omega)}=0.5278 \\
& Q_{2}=\frac{\sqrt{R_{3} R_{4} C_{3} C_{4}}}{C_{4}\left(R_{3}+R_{4}\right)}=\frac{\sqrt{1.91 \mathrm{k} \Omega \cdot 16.2 k \Omega \cdot 47 n F \cdot 6.8 n F}}{6.8 n F \cdot(1.91 \mathrm{k} \Omega+16.2 \mathrm{k} \Omega)}=0.8075
\end{aligned}
$$

- V(V1:+) * $20 * \log 10(V(U 1 A:-) / V(V 1:+))$ จ $20 * \log 10(V(U 1 B: 0 U T) / V(V 1:+))$

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to -2.9084 dB at 1 kHz and then it decreases by -80dB/decade.

Fourth-order high-pass [cascaded]

This circuit is implemented with the Sallen/Key topology by cascading two second-order filters. The quality factors for the first and the second block must be 0.5219 and 0.8055 respectively. When the filter is designed for a specific frequency, the cutoff of the first block must be offset down by $1 / 1.4192$ and the cutoff for the second block must be offset down by $1 / 1.5912$. This is a fourth-order filter because it has four capacitors.

AC sweep from 1 Hz to 1 MHz
The cutoff frequencies are

$$
\begin{aligned}
& f_{c 1}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{3.83 k \Omega \cdot 9.09 \mathrm{k} \Omega \cdot 100 \mathrm{nF} \cdot 15 \mathrm{nF}}=696 \mathrm{~Hz}} \\
& f_{c 2}=\frac{1}{2 \pi \sqrt{R_{3} R_{4} C_{3} C_{4}}}=\frac{1}{2 \pi \sqrt{3.83 \mathrm{k} \Omega \cdot 16.5 \mathrm{k} \Omega \cdot 68 \mathrm{nF} \cdot 15 \mathrm{nF}}}=627 \mathrm{~Hz}
\end{aligned}
$$

The quality factors are

$$
\begin{aligned}
& Q_{1}=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{R_{1}\left(C_{1}+C_{2}\right)}=\frac{\sqrt{3.83 k \Omega \cdot 9.09 k \Omega \cdot 100 \mathrm{nF} \cdot 15 \mathrm{nF}}}{3.83 \mathrm{k} \Omega \cdot(100 \mathrm{nF}+15 \mathrm{nF})}=0.5188 \\
& Q_{2}=\frac{\sqrt{R_{3} R_{4} C_{3} C_{4}}}{R_{3}\left(C_{3}+C_{4}\right)}=\frac{\sqrt{3.83 k \Omega \cdot 16.5 \mathrm{k} \Omega \cdot 68 \mathrm{nF} \cdot 15 \mathrm{nF}}}{3.83 k \Omega \cdot(68 \mathrm{nF}+15 \mathrm{nF})}=0.7978
\end{aligned}
$$

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to -3.0854 dB at 1 kHz and then it decreases by -80dB/decade.

Chebyshev filter

The Chebyshev filter bears the name of Pafnuty Lvovich Chebyshev, a Russian mathematician who developed the theory behind the Chebyshev polynomials.

Chebyshev filters come in two variants: if the ripple is present in the passband, they are called Type I otherwise, if the ripple is present in the stopband, they are called Type II (also known as Inverted).

Type I

This is the Chebyshev filter with the ripple in the passband. It's probably the most common version of the filter.

The filter can be designed to have different ripples that can vary from 0.5 dB to 3 dB and intermediate values (typically in 0.5 dB increments)

For a second-order Chebyshev Type I filter, the quality factors must be $0.8637,0.9565,1.1286$ and 1.3049 for $0.5 \mathrm{~dB}, 1 \mathrm{~dB}, 2 \mathrm{~dB}$ and 3 dB versions of the filter respectively.

Second-order low-pass [0.5dB ripple]

In the following example, the circuit is implemented with the Sallen/Key topology. The quality factor must be 0.8637 . When the filter is designed for a specific frequency, the cutoff must be offset up by 1.2313 . This specific filter is designed to have a 0.5 dB ripple in the passband. This is a second-order filter because it has two capacitors.

Chebyshev 0.5 dB ripple filter (low-pass) (2 $2^{\text {nd }}$-order)
Note: for a $0.5 d B$ ripple, $R_{1}=R_{2}$ and $C_{1}=2.986 x C_{2}$.

AC sweep from 1 Hz to 1 MHz
The ripple in the passband is noticeable.
The cutoff frequency is

$$
f_{c}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{749 \Omega \cdot 749 \Omega \cdot 298 \mathrm{nF} \cdot 100 \mathrm{nF}}}=1.231 \mathrm{kHz}
$$

The quality factor is

$$
Q=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{C_{1}\left(R_{1}+R_{2}\right)}=\frac{\sqrt{749 \Omega \cdot 749 \Omega \cdot 298 n F \cdot 100 n F}}{100 n F \cdot(749 \Omega+749 \Omega)}=0.8631
$$

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to 0 dB at 1 kHz and then it decreases by $-40 \mathrm{~dB} / \mathrm{decade}$.

Close-up of 0.5 dB ripple
The frequency response of the circuit peaks at 709 Hz with a 0.5 dB overshoot and then it decays rapidly passing through 0 dB at 1 kHz .

Second-order low-pass [1dB ripple]

In the following example, the circuit is implemented with the Sallen/Key topology. The quality factor must be 0.9565 . When the filter is designed for a specific frequency, the cutoff must be offset up by 1.05 . This specific filter is designed to have a 1 dB ripple in the passband. This is a second-order filter because it has two capacitors.

Chebyshev 1 dB ripple filter (low-pass) ($2^{\text {nd }}$-order)
Note: for a $1 d B$ ripple, $R_{3}=R_{4}$ and $C_{3}=3.663 x C_{4}$.

AC sweep from 1 Hz to 1 MHz
The ripple in the passband is noticeable.
The cutoff frequency is

$$
f_{c}=\frac{1}{2 \pi \sqrt{R_{3} R_{4} C_{3} C_{4}}}=\frac{1}{2 \pi \sqrt{792 \Omega \cdot 792 \Omega \cdot 366 \mathrm{FF} \cdot 100 \mathrm{nF}}}=1.05 \mathrm{kHz}
$$

The quality factor is

$$
Q=\frac{\sqrt{R_{3} R_{4} C_{3} C_{4}}}{C_{4}\left(R_{3}+R_{4}\right)}=\frac{\sqrt{792 \Omega \cdot 792 \Omega \cdot 366 n F \cdot 100 n F}}{100 n F \cdot(792 \Omega+792 \Omega)}=0.9566
$$

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to 0 dB at 1 kHz and then it decreases by $-40 \mathrm{~dB} /$ decade.

Close-up of 1 dB ripple
The frequency response of the circuit peaks at 707 Hz with a 1 dB overshoot and then it decays rapidly passing through 0 dB at 1 kHz .

Second-arder law-pass [2dB ripple]

In the following example, the circuit is implemented with the Sallen/Key topology. The quality factor must be 1.1286. When the filter is designed for a specific frequency, the cutoff must be offset down by 0.9072 . This specific filter is designed to have a 2 dB ripple in the passband. This is a second-order filter because it has two capacitors.

Chebyshev 2dB ripple filter (low-pass) ($2^{\text {nd }}$-order)
Note: for a 1 dB ripple, $R_{5}=R_{6}$ and $C_{5}=5.098 \times C_{6}$.

AC sweep from 1 Hz to 1 MHz
The ripple in the passband is noticeable.
The cutoff frequency is

$$
f_{c}=\frac{1}{2 \pi \sqrt{R_{5} R_{6} C_{5} C_{6}}}=\frac{1}{2 \pi \sqrt{777 \Omega \cdot 777 \Omega \cdot 509 \mathrm{nF} \cdot 100 \mathrm{nF}}}=908 \mathrm{~Hz}
$$

The quality factor is

$$
Q=\frac{\sqrt{R_{5} R_{6} C_{5} C_{6}}}{C_{6}\left(R_{5}+R_{6}\right)}=\frac{\sqrt{777 \Omega \cdot 777 \Omega \cdot 509 n F \cdot 100 n F}}{100 n F \cdot(777 \Omega+777 \Omega)}=1.1281
$$

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to 0 dB at 1 kHz and then it decreases by $-40 \mathrm{~dB} / \mathrm{decade}$.

The frequency response of the circuit peaks at 707 Hz with a 2 dB overshoot and then it decays rapidly passing through 0 dB at 1 kHz .

Second-order low-pass [3dB ripple]

In the following example, the circuit is implemented with the Sallen/Key topology. The quality factor must be 1.3049. When the filter is designed for a specific frequency, the cutoff must be offset down by 0.8414 . This specific filter is designed to have a 3 dB ripple in the passband. This is a second-order filter because it has two capacitors.

Chebyshev 3dB ripple filter (low-pass) ($2^{\text {nd }}$-order)
Note: for a $1 d B$ ripple, $R_{7}=R_{8}$ and $C_{7}=6.812 x C_{8}$.

AC sweep from 1 Hz to 1 MHz
The ripple in the passband is noticeable.
The cutoff frequency is

$$
f_{c}=\frac{1}{2 \pi \sqrt{R_{7} R_{8} C_{7} C_{8}}}=\frac{1}{2 \pi \sqrt{725 \Omega \cdot 725 \Omega \cdot 681 \mathrm{nF} \cdot 100 \mathrm{nF}}}=841 \mathrm{~Hz}
$$

The quality factor is

$$
Q=\frac{\sqrt{R_{7} R_{8} C_{7} C_{8}}}{C_{8}\left(R_{7}+R_{8}\right)}=\frac{\sqrt{725 \Omega \cdot 725 \Omega \cdot 681 n F \cdot 100 n F}}{100 n F \cdot(725 \Omega+725 \Omega)}=1.3048
$$

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to 0 dB at 1 kHz and then it decreases by $-40 \mathrm{~dB} / \mathrm{decade}$.

Close-up of 3dB ripple
The frequency response of the circuit peaks at 708 Hz with a 3dB overshoot and then it decays rapidly passing through 0 dB at 1 kHz .

Second-arder high-pass [D.5dB ripple]

In the following example, the circuit is implemented with the Sallen/Key topology. The quality factor must be 0.8637 . When the filter is designed for a specific frequency, the cutoff must be offset down by $1 / 1.2313$. This specific filter is designed to have a 0.5 dB ripple in the passband. This is a secondorder filter because it has two capacitors.

Chebyshev 0.5 dB ripple filter (high-pass) ($2^{\text {nd }}-$ order)
Note: for a $0.5 d B$ ripple, $C_{1}=C_{2}$ and $R_{2}=2.986 x R_{1}$.

AC sweep from 1 Hz to 1 MHz
The ripple in the passband is noticeable.
The cutoff frequency is

$$
f_{c}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{1.135 k \Omega \cdot 3.382 \Omega \cdot 100 \mathrm{nF} \cdot 100 \mathrm{nF}}}=812 \mathrm{~Hz}
$$

The quality factor is

$$
Q=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{R_{1}\left(C_{1}+C_{2}\right)}=\frac{\sqrt{1.135 \mathrm{k} \Omega \cdot 3.382 \mathrm{k} \Omega \cdot 100 \mathrm{nF} \cdot 100 \mathrm{nF}}}{1.135 \mathrm{k} \Omega \cdot(100 \mathrm{nF}+100 \mathrm{nF})}=0.8631
$$

The magnitude drops to 0 dB at 1 kHz and then it decreases by $-40 \mathrm{~dB} /$ decade.

The frequency response of the circuit peaks at 1.4125 kHz with a 0.5 dB overshoot and then it decays rapidly passing through 0 dB at 1 kHz .

Second-order high-pass [1dB ripple]

In the following example, the circuit is implemented with the Sallen/Key topology. The quality factor must be 0.9565 . When the filter is designed for a specific frequency, the cutoff must be offset down by $1 / 1.05$. This specific filter is designed to have a 1 dB ripple in the passband. This is a second-order filter because it has two capacitors.

Chebyshev 1 dB ripple filter (high-pass) ($2^{\text {nd }}$-order)
Note: for a $1 d B$ ripple, $C_{3}=C_{4}$ and $R_{4}=3.663 \times R_{3}$.

AC sweep from 1 Hz to 1 MHz
The ripple in the passband is noticeable.
The cutoff frequency is

$$
f_{c}=\frac{1}{2 \pi \sqrt{R_{3} R_{4} C_{3} C_{4}}}=\frac{1}{2 \pi \sqrt{874 \Omega \cdot 3.2 \mathrm{k} \mathrm{\Omega} \cdot 100 \mathrm{nF} \cdot 100 \mathrm{nF}}}=952 \mathrm{~Hz}
$$

The quality factor is

$$
Q=\frac{\sqrt{R_{3} R_{4} C_{3} C_{4}}}{R_{3}\left(C_{3}+C_{4}\right)}=\frac{\sqrt{874 \Omega \cdot 3.2 k \Omega \cdot 100 \mathrm{nF} \cdot 100 \mathrm{nF}}}{874 \Omega \cdot(100 \mathrm{nF}+100 \mathrm{nF})}=0.9567
$$

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to 0 dB at 1 kHz and then it decreases by $-40 \mathrm{~dB} / \mathrm{decade}$.

Close-up of 1dB ripple
The frequency response of the circuit peaks at 1.4125 kHz with a 1 dB overshoot and then it decays rapidly passing through 0 dB at 1 kHz .

Second-order high-pass [2dB ripple]

In the following example, the circuit is implemented with the Sallen/Key topology. The quality factor must be 1.1286. When the filter is designed for a specific frequency, the cutoff must be offset up by $1 / 0.9072$. This specific filter is designed to have a 2 dB ripple in the passband. This is a second-order filter because it has two capacitors.

Chebyshev 2dB ripple filter (high-pass) (2 $2^{\text {nd }}$-order)
Note: for a $2 d B$ ripple, $C_{5}=C_{6}$ and $R_{6}=5.098 x R_{5}$.

AC sweep from 1 Hz to 1 MHz
The ripple in the passband is noticeable.
The cutoff frequency is

$$
f_{c}=\frac{1}{2 \pi \sqrt{R_{5} R_{6} C_{5} C_{6}}}=\frac{1}{2 \pi \sqrt{640 \Omega \cdot 3.26 \mathrm{k} \Omega \cdot 100 \mathrm{nF} \cdot 100 \mathrm{nF}}}=1.102 \mathrm{~Hz}
$$

The quality factor is

$$
Q=\frac{\sqrt{R_{5} R_{6} C_{5} C_{6}}}{R_{5}\left(C_{5}+C_{6}\right)}=\frac{\sqrt{640 \Omega \cdot 3.26 \mathrm{k} \Omega \cdot 100 \mathrm{nF} \cdot 100 \mathrm{nF}}}{640 \Omega \cdot(100 \mathrm{nF}+100 \mathrm{nF})}=1.1285
$$

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to 0 dB at 1 kHz and then it decreases by $-40 \mathrm{~dB} /$ decade.

Close-up of 2dB ripple
The frequency response of the circuit peaks at 1.4125 kHz with a 2 dB overshoot and then it decays rapidly passing through 0 dB at 1 kHz .

Second-order high-pass [3dB ripple]

In the following example, the circuit is implemented with the Sallen/Key topology. The quality factor must be 1.3049. When the filter is designed for a specific frequency, the cutoff must be offset up by $1 / 0.8414$. This specific filter is designed to have a 3dB ripple in the passband. This is a second-order filter because it has two capacitors.

Chebyshev 3dB ripple filter (high-pass) (2 $2^{\text {nd }}-$ order)
Note: for a $3 d B$ ripple, $C_{7}=C_{8}$ and $R_{8}=6.812 x R_{7}$.

AC sweep from 1 Hz to 1 MHz
The ripple in the passband is noticeable.
The cutoff frequency is

$$
f_{c}=\frac{1}{2 \pi \sqrt{R_{7} R_{8} C_{7} C_{8}}}=\frac{1}{2 \pi \sqrt{513 \Omega \cdot 3.494 k \Omega \cdot 100 \mathrm{nF} \cdot 100 \mathrm{nF}}}=1.189 \mathrm{~Hz}
$$

The quality factor is

$$
Q=\frac{\sqrt{R_{7} R_{8} C_{7} C_{8}}}{R_{7}\left(C_{7}+C_{8}\right)}=\frac{\sqrt{513 \Omega \cdot 3.494 \mathrm{k} \Omega \cdot 100 \mathrm{nF} \cdot 100 \mathrm{nF}}}{513 \Omega \cdot(100 \mathrm{nF}+100 \mathrm{nF})}=1.3049
$$

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to 0 dB at 1 kHz and then it decreases by $-40 \mathrm{~dB} / \mathrm{decade}$.

Close-up of 3dB ripple
The frequency response of the circuit peaks at 1.4125 kHz with a 3 dB overshoot and then it decays rapidly passing through 0 dB at 1 kHz .

Third-order low-pass [D.5dB ripple] [cascaded]

This circuit is implemented with the Sallen/Key topology by cascading a simple low-pass filter after a second-order filter. For the second-order block the quality factor must be 1.7062 whereas the quality factor for the low-pass filter is not defined. When the filter is designed for a specific frequency, the cutoff of the second-order block must be offset up by 1.0689 and the cutoff for the RC filter must be offset down by 0.6265 . This is a third-order filter because it has three capacitors.

Chebyshev 0.5 dB ripple filter (low-pass) $\left(3^{\text {rd }}\right.$-order)

AC sweep from 1 Hz to 1 MHz
The cutoff frequencies are

$$
\begin{aligned}
& f_{c 1}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{1.87 \mathrm{k} \Omega \cdot 16.9 \mathrm{k} \mathrm{\Omega} \cdot 150 \mathrm{nF} \cdot 4.7 \mathrm{nF}}}=1.066 \mathrm{kHz} \\
& f_{c 2}=\frac{1}{2 \pi R_{3} C_{3}}=\frac{1}{2 \pi \cdot 11.5 \mathrm{k} \Omega \cdot 22 n F}=629 \mathrm{~Hz}
\end{aligned}
$$

The quality factor of the second-order block is

$$
Q=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{C_{2}\left(R_{1}+R_{2}\right)}=\frac{\sqrt{1.87 \mathrm{k} \Omega \cdot 16.9 \mathrm{k} \Omega \cdot 150 \mathrm{nF} \cdot 4.7 n F}}{4.7 n F \cdot(1.87 \mathrm{k} \Omega+16.9 \mathrm{k} \Omega)}=1.692
$$

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to -0.5464 dB at 1 kHz and then it decreases by -60dB/decade.

Third-order high-pass [0.5dB ripple] [cascaded]

This circuit is implemented with the Sallen/Key topology by cascading a simple high-pass filter after a second-order filter. For the second-order block the quality factor must be 1.7062 whereas the quality factor for the low-pass filter is not defined. When the filter is designed for a specific frequency, the cutoff of the second-order block must be offset down by $1 / 1.0689$ and the cutoff for the RC filter must be offset up by $1 / 0.6265$. This is a third-order filter because it has three capacitors.

Chebyshev 0.5 dB ripple filter (high-pass) ($3^{\text {rd }}$-order)

AC sweep from 1 Hz to 1 MHz
The cutoff frequencies are

$$
\begin{aligned}
& f_{c 1}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{1.87 k \Omega \cdot 48.7 \mathrm{k} \Omega \cdot 47 \mathrm{nF} \cdot 6.8 \mathrm{nF}}}=938 \mathrm{~Hz} \\
& f_{c 2}=\frac{1}{2 \pi R_{3} C_{3}}=\frac{1}{2 \pi \cdot 6.65 \mathrm{k} \Omega \cdot 15 \mathrm{nF}}=1.596 \mathrm{kHz}
\end{aligned}
$$

The quality factor of the second-order block is

$$
Q=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{R_{1}\left(C_{1}+C_{2}\right)}=\frac{\sqrt{1.87 \mathrm{k} \Omega \cdot 48.7 k \Omega \cdot 47 n F \cdot 6.8 n F}}{1.87 \mathrm{k} \Omega \cdot(47 n F+6.8 n F)}=1.6958
$$

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to -0.5422 dB at 1 kHz and then it decreases by -60dB/decade.

Fourth-order low-pass [0.5dB ripple] [cascaded]

This circuit is implemented with the Sallen/Key topology by cascading two second-order filters. The quality factors for the first and the second block must be 0.7151 and 2.9406 respectively. When the filter is designed for a specific frequency, the cutoff of the first block must be offset down by 0.5970 and the cutoff for the second block must be offset up by 1.0313. This is a fourth-order filter because it has four capacitors.

Chebyshev 0.5 dB ripple filter (low-pass) ($4^{\text {th }}$-order)

AC sweep from 1 Hz to 1 MHz
The cutoff frequencies are

$$
\begin{aligned}
& f_{c 1}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{1.37 \mathrm{k} \Omega \cdot 15.8 \mathrm{k} \Omega \cdot 150 \mathrm{nF} \cdot 22 \mathrm{nF}}=595 \mathrm{~Hz}} \\
& f_{c 2}=\frac{1}{2 \pi \sqrt{R_{3} R_{4} C_{3} C_{4}}}=\frac{1}{2 \pi \sqrt{2.26 \mathrm{k} \Omega \cdot 21.5 \mathrm{k} \Omega \cdot 220 \mathrm{nF} \cdot 2.2 n F}}=1.038 \mathrm{kHz}
\end{aligned}
$$

The quality factors are

$$
\begin{aligned}
& Q_{1}=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{C_{2}\left(R_{1}+R_{2}\right)}=\frac{\sqrt{1.37 k \Omega \cdot 15.8 \mathrm{k} \Omega \cdot 150 n F \cdot 22 n F}}{22 n F \cdot(1.37 \mathrm{k} \Omega+15.8 \Omega)}=0.7075 \\
& Q_{2}=\frac{\sqrt{R_{3} R_{4} C_{3} C_{4}}}{C_{4}\left(R_{3}+R_{4}\right)}=\frac{\sqrt{2.26 k \Omega \cdot 21.5 k \Omega \cdot 220 n F \cdot 2.2 n F}}{2.2 n F \cdot(2.26 \mathrm{k} \Omega+21.5 \mathrm{k} \Omega)}=2.9338
\end{aligned}
$$

Frequency
Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to -0.036 dB at 1 kHz and then it decreases by -80dB/decade.

Fourth-order high-pass [D.5dB ripple] [cascaded]

This circuit is implemented with the Sallen/Key topology by cascading two second-order filters. The quality factors for the first and the second block must be 0.7051 and 2.9406 respectively. When the filter is designed for a specific frequency, the cutoff of the first block must be offset up by 1/0.5970 and the cutoff for the second block must be offset up by $1 / 1.0313$. This is a fourthorder filter because it has four capacitors.

Chebyshev 0.5 dB ripple filter (high-pass) $\left(4^{\text {th }}\right.$-order)

Frequency
AC sweep from 1 Hz to 1 MHz
The cutoff frequencies are

$$
\begin{aligned}
& f_{c 1}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{2.37 \mathrm{k} \Omega \cdot 8.06 \mathrm{k} \Omega \cdot 47 \mathrm{nF} \cdot 10 \mathrm{nF}}=1.68 \mathrm{kHz}} \\
& f_{c 2}=\frac{1}{2 \pi \sqrt{R_{3} R_{4} C_{3} C_{4}}}=\frac{1}{2 \pi \sqrt{1.5 \mathrm{k} \Omega \cdot 118 \mathrm{k} \Omega \cdot 33 \mathrm{nF} \cdot 4.7 \mathrm{nF}}}=961 \mathrm{~Hz}
\end{aligned}
$$

The quality factors are

$$
\begin{aligned}
& Q_{1}=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{R_{1}\left(C_{1}+C_{2}\right)}=\frac{\sqrt{2.37 k \Omega \cdot 8.06 k \Omega \cdot 47 \mathrm{nF} \cdot 10 \mathrm{nF}}}{2.37 \mathrm{k} \Omega \cdot(47 \mathrm{nF}+10 \mathrm{nF})}=0.7014 \\
& Q_{2}=\frac{\sqrt{R_{3} R_{4} C_{3} C_{4}}}{R_{3}\left(C_{3}+C_{4}\right)}=\frac{\sqrt{1.5 \mathrm{k} \Omega \cdot 118 \mathrm{k} \Omega \cdot 33 \mathrm{nF} \cdot 4.7 \mathrm{nF}}}{1.5 \mathrm{k} \Omega \cdot(33 \mathrm{nF}+4.7 \mathrm{nF})}=2.9299
\end{aligned}
$$

Frequency
Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to -0.14 dB at 1 kHz and then it decreases by -80dB/decade.

Fifth-order low-pass [0.5dB ripple] [cascaded]

This circuit is implemented with the Sallen/Key topology by cascading a simple low-pass filter after two second-order filters. The quality factors for the first and the second block must be 1.1778 and 4.5450 whereas the quality factor for the low-pass filter is not defined. When the filter is designed for a specific frequency, the cutoff of the first block must be offset down by 0.6905, the cutoff for the second block must be offset up by 1.0177 and the cutoff for the RC filter must be offset down by 0.3623 . This is a fifth-order filter because it has five capacitors.

AC sweep from 1 Hz to 1 MHz
The cutoff frequencies are

$$
\begin{aligned}
& f_{c 1}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{2 \mathrm{k} \Omega \cdot 17.8 \mathrm{k} \Omega \cdot 150 \mathrm{nF} \cdot 10 \mathrm{nF}}=689 \mathrm{~Hz}} \\
& f_{c 2}=\frac{1}{2 \pi \sqrt{R_{3} R_{4} C_{3} C_{4}}}=\frac{1}{2 \pi \sqrt{2.43 \mathrm{k} \Omega \cdot 20.5 \mathrm{k} \Omega \cdot 330 \mathrm{nF} \cdot 1.5 \mathrm{nF}}}=1.014 \mathrm{kHz} \\
& f_{c 3}=\frac{1}{2 \pi R_{5} C_{5}}=\frac{1}{2 \pi \cdot 9.31 \mathrm{k} \Omega \cdot 47 \mathrm{nF}}=364 \mathrm{~Hz}
\end{aligned}
$$

The quality factors are

$$
\begin{aligned}
& Q_{1}=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{R_{1}\left(C_{1}+C_{2}\right)}=\frac{\sqrt{2 k \Omega \cdot 17.8 k \Omega \cdot 150 n F \cdot 10 n F}}{2 k \Omega \cdot(150 n F+10 n F)}=1.1671 \\
& Q_{2}=\frac{\sqrt{R_{3} R_{4} C_{3} C_{4}}}{R_{3}\left(C_{3}+C_{4}\right)}=\frac{\sqrt{2.43 k \Omega \cdot 20.5 k \Omega \cdot 330 n F \cdot 1.5 n F}}{2.43 k \Omega \cdot(330 \mathrm{nF}+1.5 \mathrm{nF})}=4.5655
\end{aligned}
$$

Frequency
Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to -0.519 dB at 1 kHz and then it decreases by -100dB/decade.

Fifth-order high-pass [D.5dB ripple] [cascaded]

This circuit is implemented with the Sallen/Key topology by cascading a simple low-pass filter after two second-order filters. The quality factors for the first and the second block must be 1.1778 and 4.5450 whereas the quality factor for the low-pass filter is not defined. When the filter is designed for a specific frequency, the cutoff of the first block must be offset up by $1 / 0.6905$, the cutoff for the second block must be offset down by $1 / 1.0177$ and the cutoff for the RC filter must be offset up by $1 / 0.3623$. This is a fifth-order filter because it has five capacitors.

Chebyshev 0.5 dB ripple filter (high-pass) ($5^{\text {th }}$-order)

AC sweep from 1 Hz to 1 MHz
The cutoff frequencies are

$$
\begin{aligned}
& f_{c 1}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{2.37 \mathrm{k} \Omega \cdot 23.2 \mathrm{k} \Omega \cdot 33 \mathrm{nF} \cdot 6.8 \mathrm{nF}}=1.433 \mathrm{kHz}} \\
& f_{c 2}=\frac{1}{2 \pi \sqrt{R_{3} R_{4} C_{3} C_{4}}}=\frac{1}{2 \pi \sqrt{953 \Omega \cdot 178 \mathrm{k} \Omega \cdot 33 \mathrm{nF} \cdot 4.7 \mathrm{nF}}=981 \mathrm{~Hz}} \\
& f_{c 3}=\frac{1}{2 \pi R_{5} C_{5}}=\frac{1}{2 \pi \cdot 3.57 \mathrm{k} \Omega \cdot 15 \mathrm{nF}}=2.972 \mathrm{kHz}
\end{aligned}
$$

The quality factors are

$$
\begin{aligned}
& Q_{1}=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{R_{1}\left(C_{1}+C_{2}\right)}=\frac{\sqrt{2.37 k \Omega \cdot 23.2 k \Omega \cdot 33 n F \cdot 6.8 n F}}{2.37 k \Omega \cdot(33 n F+6.8 n F)}=1.1776 \\
& Q_{2}=\frac{\sqrt{R_{3} R_{4} C_{3} C_{4}}}{R_{3}\left(C_{3}+C_{4}\right)}=\frac{\sqrt{953 \Omega \cdot 178 k \Omega \cdot 33 n F \cdot 4.7 n F}}{953 \Omega \cdot(33 n F+4.7 n F)}=4.5147
\end{aligned}
$$

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to -0.943 dB at 1 kHz and then it decreases by -100dB/decade.

Fifth-order high-pass [1dB ripple]

This circuit is implemented with two notch filter blocks and a simple RC filter. This is a fifth-order filter because the circuit contains five capacitors.

Chebyshev 1 dB ripple filter (high-pass) $\left(5^{\text {th }}\right.$-order)

AC sweep from 10 Hz to 100 kHz
The magnitude drops rapidly near 1 kHz . The ripple in the passband is noticeable.

The cutoff for the filter is at 1 kHz . Then it drops by -100 dB . The ripple in the stopband is noticeable.

Type II

This is the Chebyshev filter with the ripple in the stopband. This filter has a very sharp cutoff.

Fifth-order low-pass

This circuit is implemented with two notch filter blocks and a simple RC filter This is a fifth-order filter because the circuit contains five capacitors.

The gain in the passband boosts the input from 1 V to 1.15 V and then it drops rapidly right before 1 kHz . The ripple in the stopband is noticeable.

Magnitude plot from 100 Hz to 100 kHz
The magnitude is +1.2741 dB in the passband and -1.8478 dB at 1 kHz . Then it drops to -21.079 dB a decade later. The ripple in the stopband is noticeable.

Elliptical or Cauer filter

The Elliptical or Cauer filter has a sharp cutoff. It is named after Wilhelm Cauer, a German mathematician who developed the theory behind the filter.

Third-order low-pass

This circuit is implemented with an asymmetrical twin-T notch filter $\left(R_{1}, R_{2}, R_{3}\right.$, $\left.\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}\right)$. This is a third-order filter.

Elliptical or Cauer filter (low-pass) (3 $3^{\text {rd }}$-order)

AC sweep from 1 Hz to 1 MHz
The gain in the passband boosts the input from 1 V to 4.3 V . The ripple in the passband is barely noticeable. The magnitude drops rapidly right before 1 kHz .

Abstract

The magnitude is +12.669 dB in the passband and +8.7278 dB at 1 kHz . Then it drops to -29.254 dB a decade later.

Synchronaus filter

Synchronous filters are made up by a series of filters cascaded after each other. Each capacitor introduces one or more poles. Resistors and capacitors usually have all the same values and they are tuned to a specific cutoff frequency.

Second-order Iow-pass

In the following example, the circuit is implemented with the Sallen/Key topology. This circuit is similar to the Linkwitz-Riley circuit discussed previously $(\mathrm{Q}=0.5)$. This is a second-order filter because it has two capacitors.

Synchronous filter (low-pass) (2 $2^{\text {nd }}$-order)
Note: all resistor and capacitor values match.

AC sweep from 1 Hz to 1 MHz
The cutoff frequency is

$$
f_{c}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{1.022 k \Omega \cdot 1.022 k \Omega \cdot 100 \mathrm{nF} \cdot 100 \mathrm{nF}}}=1.557 \mathrm{kHz}
$$

Note that the cutoff frequency is defined at 1.557 kHz but there is a scaling factor of 1.557 so the actual cutoff frequency is 1 kHz .

The quality factor is

$$
Q=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{C_{2}\left(R_{1}+R_{2}\right)}=\frac{\sqrt{1.022 k \Omega \cdot 1.022 k \Omega \cdot 100 n F \cdot 100 n F}}{100 n F \cdot(1.022 k \Omega+1.022 k \Omega)}=0.5
$$

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to -3 dB at 1 kHz and then it decreases by -40dB/decade.

Second-order high-pass

In the following example, the circuit is implemented with the Sallen/Key topology. This circuit is similar to the Linkwitz-Riley circuit discussed previously ($\mathrm{Q}=0.5$). This is a second-order filter because it has two capacitors.

Synchronous filter (high-pass) (2 $2^{\text {nd }}$-order)
Note: all resistor and capacitor values match.

AC sweep from 1 Hz to 1 MHz

The cutoff frequency is

$$
f_{c}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{1.022 k \Omega \cdot 1.022 k \Omega \cdot 100 \mathrm{nF} \cdot 100 \mathrm{nF}}}=1.557 \mathrm{kHz}
$$

Note that the cutoff frequency is defined at 1.557 kHz but there is a scaling factor of 1.557 so the actual cutoff frequency is 1 kHz .

The quality factor is

$$
Q=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{R_{1}\left(C_{1}+C_{2}\right)}=\frac{\sqrt{1.022 k \Omega \cdot 1.022 k \Omega \cdot 100 n F \cdot 100 n F}}{1.022 k \Omega \cdot(100 n F+100 n F)}=0.5
$$

The magnitude drops to -3 dB at 1 kHz and then it decreases by -40dB/decade.

Third-order low-pass

In the following example, the circuit is implemented with the Sallen/Key topology by cascading a simple low-pass filter after a second-order filter. This circuit is similar to the Butterworth circuit discussed previously. The secondorder block the quality factor is 0.5 whereas the quality factor for the low-pass filter is not defined. This is a third-order filter because it has three capacitors.

Synchronous filter (low-pass) (3 ${ }^{\text {rd }}$-order)
Note: all resistor and capacitor values match.

AC sweep from 1 Hz to 1 MHz
The cutoff frequencies are

$$
\begin{aligned}
& f_{c 1}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{810 \Omega \cdot 810 \Omega \cdot 100 \mathrm{nF} \cdot 100 \mathrm{nF}}}=1.965 \mathrm{kHz} \\
& f_{c 2}=\frac{1}{2 \pi R_{3} C_{3}}=\frac{1}{2 \pi \cdot 810 \Omega \cdot 100 \mathrm{nF}}=1.965 \mathrm{kHz}
\end{aligned}
$$

Note that the cutoff frequency is defined at 1.965 kHz but there is a scaling factor of 1.965 so the actual cutoff frequency is 1 kHz .

The quality factor of the second-order block is

$$
Q=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{C_{2}\left(R_{1}+R_{2}\right)}=\frac{\sqrt{810 \Omega \cdot 810 \Omega \cdot 100 \mathrm{nF} \cdot 100 \mathrm{nF}}}{100 \mathrm{nF} \cdot(810 \Omega+810 \Omega)}=0.5
$$

Magnitude plot from 1 Hz to 1 MHz
The magnitude drops to -3 dB at 1 kHz and then it decreases by -40dB/decade.

Fourth-order low-pass

In the following example, the circuit is implemented with the Sallen/Key topology by cascading two identical second-order filters. This circuit is similar to the Butterworth circuit discussed previously. However, the quality factors for the first and the second block are 0.5 and the overall quality factor is 0.7071 . This is a fourth-order filter because it has four capacitors.

Synchronous filter (low-pass) (4 ${ }^{\text {th }}$-order)
Note: all resistor and capacitor values match.

AC sweep from 1 Hz to 1 MHz
The cutoff frequencies are

$$
f_{c 1}=f_{c 2}=\frac{1}{2 \pi \sqrt{R_{1} R_{2} C_{1} C_{2}}}=\frac{1}{2 \pi \sqrt{691 \Omega \cdot 691 \Omega \cdot 100 \mathrm{nF} \cdot 100 \mathrm{nF}}}=2.303 \mathrm{kHz}
$$

Note that the cutoff frequency is defined at 2.303 kHz but there is a scaling factor of 2.303 so the actual cutoff frequency is 1 kHz .

The quality factors are

$$
Q_{1}=Q_{2}=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{C_{2}\left(R_{1}+R_{2}\right)}=\frac{\sqrt{691 \Omega \cdot 691 \Omega \cdot 100 \mathrm{nF} \cdot 100 \mathrm{nF}}}{100 \mathrm{nF} \cdot(691 \Omega+691 \Omega)}=0.5
$$

Abstract

The magnitude drops to -3 dB at 1 kHz and then it decreases to -51.99 dB a decade later.

Linkwitz-Riley crossaver

The Linkwitz-Riley crossover is an audio application that stems from the work of Linkwitz and Riley.

The crossover can be implemented with different orders. For every order, the gain of the filter will drop by $-6 \mathrm{~dB} /$ octave or $-20 \mathrm{~dB} /$ decade past the cutoff frequency. Increasing the order of the filter will produce a sharper cutoff.

The crossover can be designed to split the audible spectrum in 2,3 or 4 ways. A 2-way audio crossover splits the audible spectrum in two parts, it has a single cutoff frequency and it's implemented by cascoding two Butterworth filters (low-pass and high-pass). For a 3-way crossover, there will be three regions with a low cutoff frequency and a high cutoff frequency. This is arguably the most popular crossover configuration in the market. The reason why the audible spectrum is divided into 3 sections is explained by the need for audio systems to handle each section more effectively through speakers for proper sound reproduction. A 3-way system has 6 speakers (2 for each channel).

A 3-way $4^{\text {th }}$-order Linkwitz-Riley crossover can be designed with the following expression:

$$
f=\frac{1}{2 \pi \sqrt{2} R C}
$$

First of all the designer needs to choose cutoff frequencies for the specific regions of the spectrum. At that point, with a set frequency, a value for capacitance (C) or resistance (R) is chosen and the other one is derived.

Assuming that the desired low cutoff frequency is 340 Hz then C can be chosen to be 100 nF and R can be chosen to be $3.3 \mathrm{k} \Omega$.

$$
f_{L}=\frac{1}{2 \pi \sqrt{2} R C}=\frac{1}{2 \pi \sqrt{2} \cdot 3.3 \mathrm{k} \Omega \cdot 100 \mathrm{nF}}=341.029 \mathrm{~Hz}
$$

Assuming that the desired high cutoff frequency is 3.5 kHz then C can be chosen to be 6.8 nF and R can be chosen to be $4.7 \mathrm{k} \Omega$.

$$
f_{H}=\frac{1}{2 \pi \sqrt{2} R C}=\frac{1}{2 \pi \sqrt{2} \cdot 4.7 \mathrm{k} \Omega \cdot 6.8 \mathrm{nF}}=3.521 \mathrm{kHz}
$$

E.S.P. Linkwitz-Riley Crossover Calculator screenshots for low pass and high pass

The values for the two sections of the crossover need to be arranged just like shown above. The values of capacitance or resistance double depending on the configuration of the specific section of the filter.

3-way Linkwitz-Riley crossover

The circuit previously shown is a cascode of 3 sections. The top provides the high frequencies, the bottom provides the low frequencies and the central part provides the mid frequencies. High and low sections are made up by a cascade of $22^{\text {nd }}$-order Butterworth filters. The middle section is a high-pass section followed by a low-pass section.

AC sweep from 20 Hz to 20 kHz
The frequency response for the 3-way Linkwitz-Riley crossover is shown above. The low cutoff frequency is 340 Hz . The high cutoff frequency is 3.5 kHz .

A 3-way $4^{\text {th }}$-order crossover's gain will drop by $-24 \mathrm{~dB} /$ octave or $-80 \mathrm{~dB} / \mathrm{decade}$ past the cutoff frequency.

